Coordinated Trifluoromethanesulfonate and Fluorosulfate

GEOFFREY A. LAWRANCE

Department of Chemistry, The University of Newcastle, Newcastle, New South Wales 2308, Australia

Received May 30, 1985 (Revised Manuscript Received September 5, 1985)

Contents

Ι.	Introduction	17
II.	Synthesis and Characterization	18
	A. Ionic vs. Covalent RSO ₃ ⁻	18
	B. Main-Group Compounds	20
	C. Organometallic Compounds	21
	D. Coordination Complexes	23
III.	Kinetics of Substitution of Coordinated RSO3 ⁻	27
IV.	Synthetic Applications of Bound RSO3 ⁻	28
	A. Organometallic Compounds	28
	B. Coordination Complexes	29
V.	Conclusion	31

I. Introduction

The diversity of compounds, particularly transitionmetal compounds, incorporating as ligands what have been regarded in the past as poorly coordinated anions has increased rapidly in recent years. One of the reasons for this interest has been a recognition of the value of these compounds as inorganic synthons, that is, as precursors to a range of derivatives formed by substitution of the relatively labile ligand by ligands of greater nucleophilicity. Likely candidates as leaving groups include the anions perchlorate (ClO_4) , fluorosulfate (FSO_3^{-}) , tetrafluoroborate (BF_4^{-}) , and trifluoromethanesulfonate ($CF_3SO_3^-$). Of these ions, $CF_3SO_3^$ and FSO₃⁻ are arguably the most accessible, safe, and stable. Compounds with covalently bound trifluoromethanesulfonate and fluorosulfate are now quite extensive and continue to grow in number. Their literature dominates other contenders, and consequently they have been selected for detailed review. The similarities of the RSO_3^- ions (R = F, CF₃) are sufficiently compelling to allow consideration of their chemistry in concert.

Of the two anhydrous acids, fluorosulfuric acid has the longer history; it was first synthesized in 1889,¹ with patents for its synthesis appearing some decades later.^{2,3} Trifluoromethanesulfonic acid was first prepared in the 1950s,^{4,5} with a patent for its synthesis appearing in that decade.⁶ The anhydrous acids are both high-boiling dense liquids (CF₃SO₃H, bp 162 °C, density 1.696 g/ mL; FSO_3H , bp 162.7 °C, density 1.726 g/mL). For CF_3SO_3H , the monohydrate and several polyhydrates are known and form as crystalline solids which have been characterized by X-ray crystal structure analyses.^{7,8} The analogous hydrates of FSO₃H are less well-known, but apparently form under certain controlled conditions.⁹ Both are strong acids; measurement of the Hammett constants in acetic acid indicate that trifluoromethanesulfonic acid is a stronger acid than perchloric acid and slightly stronger than fluorosulfuric acid.¹⁰ Arguably, CF₃SO₃H is the strongest monobasic

Geoffrey A. Lawrance was born in Ipswich, Australia, and obtained B.Sc. and Ph.D. degrees from the University of Queensland and a Dip.Ed. from the University of Melbourne. He has held academic posts at the University of Melbourne and the Australian National University and is currently Senior Lecturer in inorganic chemistry at the University of Newcastle, Australia. His research covers aspects of the synthesis, reactivity, and reaction mechanisms of coordination complexes, and he was awarded the Rennie Memorial Medal of the Royal Australian Chemical Institute for research in 1982. He is married with two young sons. A particular research interest in inorganic reaction mechanisms has been reviewed previously in *Accounts of Chemical Research*. One other current research interest is the reactivity and synthetic utility of complexes of coordinated trifluoromethanesulfonate, the subject of this review.

acid known, although FSO_3H is clearly of similar strength.¹⁰⁻¹²

The alkali metal ion and tetraalkylammonium ion salts of both trifluoromethanesulfonic acid and fluorosulfuric acid are soluble in a wide range of protic and aprotic solvents; the use of tetraalkylammonium trifluoromethanesulfonates as supporting electrolytes in nonaqueous electrochemistry has been recognized.¹³ Both simple cation and metal complex cation salts of $CF_3SO_3^-$ and FSO_3^- show good solubility in polar solvents; for complexes, this is a property of some value. Unlike perchlorate, these ions are not oxidizing anions and therefore are inherently safer to handle. No oxidation of various divalent metal ions by trifluoromethanesulfonic acid was detected after 24 h in 1.0 M acid at 570 K.¹⁴

The electron-withdrawing properties of the CF_3 -, F-, and $-SO_2$ - groups suggest that the CF_3SO_3 - and FSO_3 anions may act as good leaving groups; the trifluoromethanesulfonate ion has found favor in this role in organic chemistry.¹⁵⁻¹⁹ The properties and some reactions of the acids $CF_3SO_3H^{20,21}$ and FSO_3H^{22} have been reviewed. The inertness and low nucleophilicity of the anions suggest that they can have a useful role as both indifferent anions and relatively labile leaving groups in inorganic chemistry, paralleling their role in organic chemistry. Particularly with metal complexes, this has been recognized and exploited in recent years. The formation and reactions of bound RSO_3^- (R = F, CF₃) are reviewed in this article. Clearly the title belies a personal bias toward coordination complexes; however, examples of covalently bound FSO_3^- and $CF_3SO_3^$ throughout the periodic table will be addressed, although emphasis may lie on transition-metal chemistry, where striking advances have been made in the past decade.

Of the two anions, there is developing a preference for $CF_3SO_3^-$ as an inert and indifferent anion and as a labile ligand. In water, CF_3SO_3H ionizes completely and simply via

$$CF_3SO_3H + H_2O \rightarrow H_3O^+ + CF_3SO_3^-$$
(1)

However, FSO_3H can undergo several reactions,²²⁻²⁴ namely

ionization: $FSO_3H + H_2O \rightleftharpoons H_3O^+ + FSO_3^-$ (2)

fast hydrolysis: $FSO_3H + H_2O \rightleftharpoons H_2SO_4 + HF$ (3)

slow hydrolysis:
$$FSO_3^- + H_2O \rightleftharpoons HSO_4^- + HF$$
(4)

and the latter two reactions clearly impair its virtue as an inert and indifferent anion, at least in aqueous solution. Importantly, it has been shown recently that coordinated CF₃SO₃⁻ in Co(NH₃)₅(OSO₂CF₃)²⁺ hydrolyzes cleanly and completely in dilute aqueous acidic or basic solution with simple Co-O cleavage.²⁵ The analogue $Co(NH_3)_5(OSO_2F)^{2+}$ in dilute aqueous acid undergoes cleavage during aquation to produce F⁻ and SO_4^{2-} ; this scission also occurs in dimethyl sulfoxide.²⁶ This propensity for degradation of bound FSO₃⁻ implies that $CF_3SO_3^-$ is the preferred anion, at least where reactions in protic or polar solvents are envisaged. Nevertheless, examples of bound FSO3⁻ are almost as numerous as those of bound CF₃SO₃⁻, and since it is apparent that in many cases the above reactivity of FSO_3^{-1} is not relevant, it remains appropriate to address the chemistry of both bound fluorosulfate and bound trifluoromethanesulfonate. The majority of the literature in this area has appeared in the last two decades; reports continue to appear apace, and review of bound trifluoromethanesulfonate and fluorosulfate seems timely.

II. Synthesis and Characterization

A. Ionic vs. Covalent RSO3-

1. Simple Salts

The ions $CF_3SO_3^-$ and FSO_3^- are relatively large (\bar{V} in water for FSO_3^- is 47.8 cm³ mol^{-1 27} and for $CF_3SO_3^-$ is 80.4 cm³ mol^{-1 28}) and are species of low nucleophilicity. There is a tendency with metal ions to form simple salts that are usually ionic in the solid state and certainly ionized in solution. Salts of practically all metal ions have been prepared.^{20–22,29–33} While it does not bear directly on the topic of this review, it may be appropriate to summarize particularly the more com-

mon routes used for synthesis of simple salts:^{20,22,23}

(a) Salts from chloride salts by dissolution of the metal chloride in anhydrous acid is the most common method, $^{31-34}$

$$\mathrm{MCl}_n + n\mathrm{RSO}_3\mathrm{H} \to \mathrm{M}(\mathrm{SO}_3\mathrm{R})_n + n\mathrm{HCl}^{\dagger}$$
 (5)

which can be employed also with a variety of other halide and oxyanion salts.

(b) Salts from sulfate salts via barium sulfate in an appropriate solvent is a particularly useful method when dealing with acid-sensitive compounds.³⁵

$$M(SO_4)_n + nBa(RSO_3)_2 \rightarrow M(SO_3R)_{2n} + nBaSO_4\downarrow$$
(6)

(c) Salts may be obtained from halide salts by using $Ag^{I}RSO_{3}^{-}$ in an appropriate solvent.³⁶

$$\mathbf{MX}_n + n\mathbf{Ag}(\mathbf{RSO}_3) \to \mathbf{M}(\mathbf{RSO}_3)_n + n\mathbf{AgX} \downarrow \quad (7)$$

Salts from dissolution of the metal in the anhydrous acid do not form readily under even vigorous conditions, since the vast majority of metals are inert to the boiling acids,³⁷ neither of which is regarded as an oxidizing acid.

Techniques a-c can be applied equally well to both cationic metal complexes and simple cations.³³ While it is reasonably straightforward to establish that these simple salts ionize completely in aqueous solution, in the solid state they may show ionic, covalent, or mixed character. The resolution of these possibilities has usually relied on spectroscopic methods, particularly vibrational spectroscopy.

2. Spectroscopic Characterization

In principle there are several possible modes of bonding available to $CF_3SO_3^-$ and FSO_3^- apart from the purely ionic state:

Evidence for most of 1–5 has been forthcoming in the solid state and will be discussed in the course of the review. In solution, however, the coordinated ligands so far defined are almost exclusively of structure 1. The bidentate structure 2 is unlikely to exist in solution, given the strain in four-membered chelate rings generally and the low nucleophilicity of RSO_3^- , although a bridging situation like 4 is a little more likely. The alternative in solution of a tightly bound ion pair (6) rather than a definite M–O bond is unlikely, although it cannot be dismissed in solvents of low dielectric constant. The measured ion-pairing constant for $ClO_4^$ with $Cr(DMF)_6^{3+}$ in dimethylformamide (DMF) is over 30-fold smaller than with the small Cl⁻, while no $K_{\rm IP}$ could be measured for $B(C_6H_5)_4^{-,38}$ apparently, relatively large ions of low nucleophilicity are not good candidates for forming strong ion pairs. Both FSO₃⁻

TABLE I. Vibrational Modes for Ionic and Covalent FSO3⁻

	ionic F	$SO_3^-(C_{3v})$	covalent $FSO_3^-(C_s)$		
assignment	normal mode	example, ^a cm ⁻¹	normal mode	example, ^b cm ⁻¹	
$\overline{\nu_{s}(SO_{3})}$	$\nu_1(\mathbf{A}_1)$	1082	$\nu_1(A')$	1098	
$\nu(SF)$	$\nu_2(\mathbf{A}_1)$	786	$\nu_2(\mathbf{A}')$	842	
$\delta_{s}(SO_{3})$	$\nu_3(\mathbf{A}_1)$	566	$\overline{\nu_3(\mathbf{A}')}$	562	
$\nu_{s}(SO_{3})$	$\nu_4(\mathbf{E})$	1287	$\nu_6(A'), \nu_8(A'')$	1207, 1308	
$\delta_{s}(SO_{3})$	$\nu_5(\mathbf{E})$	592	$\nu_7(A'), \nu_9(A'')$	607, 633	
$\delta_{\rm rock}$	$\nu_6(\mathbf{E})$	409	$\nu_4(\mathbf{A}'), \nu_5(\mathbf{A}'')$	422, 431	
^a K(FSO ₃)	^b Cu(FSC) ₃) ₂ .			

and $CF_3SO_3^-$ are no smaller than ClO_4^- and are similarly of low nucleophilicity; hence 6 is not a likely structure in solution. Unbound RSO_3^- in solution will be essentially dissociated.

Overwhelmingly, characterization of binding for RSO_3^- has relied on vibrational spectroscopy. The tetrahedral ion FSO_3^- is of $C_{3\nu}$ symmetry as a free ion and should exhibit six fundamental vibrations, all IR and Raman active. Upon coordination, the symmetry is lowered to C_s ; only with structure 5 would the C_{3v} symmetry be preserved. For C_s , the three degenerate E modes of C_{3v} would split, yielding in principle nine normal modes.³⁹⁻⁴³ Expected modes with different symmetries, assignments, and examples are collected in Table I. Apart from the increase in the number of normal modes upon covalent bond formation, some shifts in the positions of vibrations associated with the sulfuryl group occur. The simplicity of the vibrational spectroscopic technique has led to its popularity for elucidating structure in the solid state where covalently bound FSO_3^- is suspected. The success of the technique has been validated on several occasions when an X-ray crystal structure of the compound under study has also been determined, thus clearly defining the coordination geometry.

The closely related CF₃SO₃⁻ anion likewise lends itself to characterization by vibrational spectroscopy. However, here the situation is not so clear-cut. Unambiguous assignments of vibrational modes is not possible due to the mixing of CF_3 and SO_3 vibrational modes and accidental coincidences of these modes arising particularly in the stretching region.⁴⁴ An assignment of the IR spectrum of ionic $CF_3SO_3^-$ as the Ag⁺ salt has been made;⁴⁵ in the stretching region, $\nu[SO_3(E)]$ and $\nu[SO_3-$ (A₁)] were assigned at 1270 and 1043 cm⁻¹, respectively, with ν [CF₃(A₁)] and ν [CF₃(E)] at 1237 and 1167 cm⁻¹ respectively. This differs from an earlier assignment of the SO₃ stretching modes in the Na⁺ salt at 1280 and 1240 cm⁻¹ and the CF_3 stretching modes at 1175 and 1035 cm⁻¹.⁴⁴ Despite the inherent problems, IR spectroscopy has been used on many occasions to identify bound or ionic $CF_3SO_3^{-.46-49}$ The stretching region offers the most significant shifts and multiplicities upon coordination. Characteristically, the band near 1280 cm^{-1} for ionic $CF_3SO_3^-$ is shifted to higher wavenumber, appearing near 1380 cm⁻¹ for monodentate-bound tri-fluoromethanesulfonate.^{47,49} Bidentate and bridging $CF_3SO_3^-$ modes have been assigned on the basis of shifts and multiplicities of bands in the stretching region,44,47 although such assignments are arguably more tenuous. While the analysis of IR spectra of CF₃SO₃⁻ is less secure than in the case of FSO_3^- the technique offers a facile method of characterization and finds favor as one of the few accessible methods for characterizing samples

that may be too reactive to study in solution.

For diamagnetic compounds in solution, ¹⁹F NMR spectroscopy is clearly a technique of potential value. providing a suitable inert solvent can be found. To date, relatively few studies of RSO₃⁻ metal complexes are extant, and most reports relate to nonmetallic compounds. Various xenon(II) compounds with FSO₂⁻ have been studied by NMR. In these cases both ¹⁹F and ¹²⁹Xe spectra can be recorded and ¹⁹F⁻¹²⁹Xe spin coupling evaluated.^{50–54} Spectra of these species have usually been measured at temperatures well below 0 °C in solvents such as BrF_5 or FSO_3H . NMR of SbF_5 -RSO₃H superacid mixtures has detected the presence of species such as H[RSO₃-SbF₅].^{55,56} Adducts with PF₅, AsF₅.⁵⁷ germanium polyfluorides,^{58,59} and boron, tin, tantalum, niobium, vanadium, and sulfur polyfluorides⁵⁹ have been detected only from solution NMR studies at low temperatures. With transition-metal complexes, ¹⁹F NMR has been involved in assigning a polymeric structure with bridging FSO_3^- in WO(SO₃- F_{4}^{60} while the spectrum of the *mer*-Rh(OSO₂F)Cl₂[P- $(CH_3)_2(C_6H_5)]_3$ intermediate has been reported.⁶¹ Clearly, much more use of NMR spectroscopy could be made with diamagnetic metal complexes.

Mössbauer spectroscopy has been employed as an aid in characterization of tin compounds with bound $RSO_3^{-.46,62-65}$ The Mössbauer spectrum of a xenon complex of FSO_3^{-} has also appeared.⁶⁶ The technique provides information on the ligand environment of the central atom, which in concert with other physical methods may indicate covalently bound RSO_3^{-} . The use of this method is strictly limited by the choice of central atom, however, and its applicability can be by no means considered general. Other techniques such as diffuse reflectance electronic spectroscopy,^{67,68} electron spin resonance spectroscopy,^{69,70} conductivity,⁷¹ magnetic susceptibility,^{67,70,72-74} and molecular weight determination⁷⁵⁻⁷⁷ have been used for characterization, but none offer the universality and simplicity of vibrational spectroscopy or the finiteness of X-ray crystallography.

3. X-ray Crystallography

The single-crystal X-ray structures of a range of compounds with covalently bound FSO3⁻ and CF3SO3⁻ have been published, and several of the proposed structures 1-5 have been observed. Crystallography indicates exclusively O-bonding; there is no structural evidence for participation of the fluorine atom on FSO₃⁻ in bonding, although this possibility has been raised on at least one occasion.⁷⁸ In all cases where covalency occurs in the structure, the situation is clear-cut; for example, the $(\mu$ -fluorosulfato)bis(fluoroxenon(II)) cation has a Xe–O bond of 2.21 Å, far too short to support only ionic interactions since the purely ionic (van der Waals contact) distance would be 3.7 Å in that case.⁷⁹ Nevertheless, particularly with transition-metal compounds, M–O distances for coordinated RSO_3^- are longer than usual M-O distances, indicative of the low degree of nucleophilicity of these ions. For example, the Fe(I-I)-OSO₂CF₃ bond in $(\eta^5$ -pentamethylcyclopentadienyl)(trifluoromethanesulfonato)iron(II) dicarbonyl is 2.007 (3) Å compared with 1.957 Å for Fe-(II)-OOCH in an analogue.^{\$0,81} Further, a Pd(II)-OS- O_2CF_3 bond at 2.271 Å has been observed, whereas a

TABLE II. Compounds with Covalent RSO₃⁻ Characterized by X-ray Crystal Structure Analysis

compound	RSO ₃ ⁻ coord mode ^a	M-O, Å	molecular shape	ref
I(OSO ₂ F) ₂ I	1	2.09, 2.26	T-shaped, trans-O	83
$[(XeF)_{2}FSO_{3}]AsF_{6}$	4	2.21	linear FXe ^{II} O	79
$(CH_3)_{2}Sn(OSO_2F)_{2}$	4	2.24	O_h Sn(IV); polymer	84
$(Me_5cp)Fe(CO)_2(OSO_2CF_3)$	1	2.007	tetrahedral Fe(II)	80
$[Cu_4(OH)_4(OSO_2CF_3)_2(N'_4)_4]^{2+}$	4	2.50 - 2.68	cubane-like tetramer ^b	85
$Me_{2}Au(OH_{2})(OSO_{2}CF_{3})$	1	2.201	square-planar Au(III) ^c	76
Pd(NHEt ₂)(OSO ₂ CF ₃)(L)	1	2.271	square-planar $Pd(II)^d$	82
$(cp)_{2}Ti(OSO_{2}CF_{3})_{2}$	1	2.003	tetrahedral Ti(IV) ^e	86
$[Cu(OSO_2CF_3)]_2 \cdot C_6H_6$	5	2.00 - 2.22	square-planar $Cu(I)^{f}$	87
[Cu(OSO ₂ CF ₃)].cyclohexene	5	2.04 - 2.22	distorted tetrahedral Cu(I) ^g	88

^a Given in terms of structures 1-5 drawn in the text. ^bN'₄ = N(C₅H₅N)₃; Cu-OH 2.38-2.40 Å; RSO₃⁻ spanning vertices of cluster. ^cAu-(III)-OH₂ 2.157 Å. ^dL = (3-diethylamino)propionyl. ^ecp = cyclopentadienyl anion. ^fInfinite chains of Cu units cross-linked in sheets by C₆H₆ molecules. ^gTetrameric units interconnected by Cu-O-Cu bridges to give infinite chains.

Figure 1. ORTEP drawing of the molecule $Au(CH_3)(OSO_2C-F_3)(OH_2)$ showing the coordinated trifluoromethanesulfonate and selected bond lengths and bond angles.⁷⁶ [Adapted from *Inorganic Chemistry* with the permission of the copyright holder.]

typical Pd(II)–O bond is ~2.0 Å, although the transacyl group does influence the bonding in that case.⁸² Structural studies reported to date are collected in Table II^{76,79,80,82-88} along with bond lengths and modes of coordination. Typical unidentate bonding of CF₃S-O₃⁻ is illustrated for the (CH₃)₂Au(OH₂)(OSO₂CF₃) complex in Figure 1.

B. Main-Group Compounds

There are many examples of covalently bound $FSO_3^$ and $CF_3SO_3^-$ with main-group elements. The compounds formed usually have strictly limited stability in solution and may even undergo thermal decomposition at relatively low temperatures. Further, most of the syntheses require stringent anhydrous conditions, and some involve the use of vacuum-line techniques. Some compounds have not been isolated, but have been detected by NMR spectroscopy at low temperatures in solvents such as liquid SO_2 and BrF_5 . While many do not exhibit the relative robustness of transition-metal complexes of coordinated RSO_3^- , and hence have a more limited synthetic usefulness, they represent an important group of compounds, and it would be improper in a review of this type to bypass them.

1. Tin(IV)

Compounds of mainly tin(IV) represent one wellknown group. Simple displacement reactions with anhydrous acids at or above room temperature exemplify the synthetic technique commonly employed, e.g.

$$R_2 SnCl_2 + 2HX \rightarrow R_2 SnX_2 + 2HCl^{\uparrow}$$
 (8)

where $X = FSO_3^-$, $CF_3SO_3^-$, and also $PO_2F_2^{-.6^2}$ Similarly, reactions of $SnCl_2$, $Sn(OAc)_4$, and $Sn(CH_3)_4$ with CF_3SO_3H yield a variety of $Sn-OSO_2CF_3$ species.⁴⁶ Alternative routes can be applied, such as reaction with the anhydride of trifluoromethanesulfonic acid,⁸⁹ e.g., eq 9, reaction with peroxodisulfuryl difluoride at and $(CH_3)Sn_2O_2Sn(CH_3) + (CF_3O_3)O_2$

$$\begin{array}{l} \mathbb{C}H_3)_3 \operatorname{Sn-O-Sn}(\operatorname{C}H_3)_3 + (\operatorname{C}F_3 \operatorname{SO}_2)_2 \operatorname{O} \xrightarrow{} \\ 2(\operatorname{C}H_3)_3 \operatorname{Sn}(\operatorname{OSO}_2 \operatorname{C}F_3) \end{array} (9)$$

above room temperature,⁶³ e.g., eq 10, or reaction with $2\operatorname{SnCl}_4 + 3\operatorname{S}_2\operatorname{O}_6\operatorname{F}_2 \rightarrow 2\operatorname{SnCl}(OSO_2\operatorname{F})_3 + 3\operatorname{Cl}_2$ (10)

 ClO_2SO_3F to extend the coordination number,⁶⁵ as in eq 11. These reactions, described specifically for $2ClO_2SO_3F + Sn(OSO_2F)_4 \rightarrow (ClO_2)_2[Sn(OSO_2F)_6]$ (11)

Sn(IV), are the conventional routes to covalently bound RSO_3^- compounds of the main-group elements in general.

A variety of spectroscopic techniques (IR, Raman, Mössbauer) have been applied, and covalency has been confirmed by a crystal-structure analysis of $(CH_3)_2Sn-(OSO_2F)_2$.⁸⁴ Vibrational spectroscopy has been routinely applied. Raman and IR spectra of $Sn(OSO_2F)_2$ indicate appreciable covalent character,⁴¹ since more than six fundamental vibrations of FSO_3^- are seen. The analogue $Sn(OSO_2CF_3)_2$, however, shows $\nu[SO_3(E)]$ near 1260, 1280 cm⁻¹, typical of ionic $CF_3SO_3^-$. For $Sn(OSO_2CF_3)_4$ these bands occur at 1350, 1375 cm⁻¹, and $Sn-OSO_2CF_3$ bonding is implied in that case.⁴⁶ The compound of formula $Sn(OSO_2CF_3)_3$ is best regarded as $Sn^{II}[Sn^{IV}(OSO_2CF_3)_6]$, since Mössbauer spectroscopy clearly defined both Sn(II) and Sn(IV), while IR bands at 1360, 1390 cm⁻¹ imply coordination of $CF_3SO_3^-$ about octahedral Sn(IV).

2. Xenon(II)

Compounds of the noble gas xenon are now wellknown. The first reported reaction of excess anhydrous FSO_3H with XeF_2 at room temperature produced a green-yellow solution which eventually decomposed to Xe and $S_2O_6F_2$.⁹⁰ A similar intermediate obtains from reaction of XeF_6 and FSO_3H , and it was proposed that Xe–OSO₂F bonding occurred. Soon after, the species $XeF(OSO_2F)$ and $Xe(OSO_2F)_2$ were reported from like reactions with XeF_4 , in addition to $XeF_5(OSO_2F)$, a volatile yet quite stable white solid at room temperature which melted with decomposition only above 70 °C.53,54 Reaction of XeF with several strong protic acids yielded solid Xe(OSO₂CF₃)F, Xe(OSO₂F)F, and Xe(OClO₃)₂, all of which were thermodynamically unstable and underwent decomposition to xenon and other products such as XeF_2 and $S_2O_6F_2$ obtained from $Xe(OSO_2F)F$ on melting.⁹¹ The synthesis and characterization of $[(FXe)_2(SO_3F)](AsF_6)$ from reaction of XeF_3^+ with HSO₃F⁵² culminated in an X-ray structural characterization of this species, where FSO₃⁻ bridges two XeF units.⁷⁹ The bonding in that case was described in terms of structure 8 together with contributions from structures 7 and 9.

The high-resolution ¹²⁹Xe NMR spectra of FXe(OS-O₂F), [(FXe)₂SO₃F]⁺, and FXe(OSO₂F)MOF₄ (M = Mo, W), where ¹⁹F⁻¹²⁹Xe spin-spin coupling is observed,⁵⁰ confirmed the existence of these species in solution in solvents such as BrF₅ and FSO₃H at temperatures below -40 °C. Further, the Xe(OSO₂F)⁺ ion and Xe(O-SO₂F)₂ have been characterized in FSO₃H solution at low temperature by ¹²⁹Xe and ¹⁹F NMR spectroscopy.⁵¹

3. Halide Compounds

Halogens in oxidation states I and III may incorporate bound RSO₃⁻. Various halide(I) complexes X-(OSO₂R) (X = Cl, Br, I) and Br(OSO₂F)₂⁻ are known,⁹²⁻⁹⁶ as are the I(III) compound I(OSO₂F)₃^{64,95} and the ions I(OSO₂F)₄⁻⁹² and I(OSO₂F)₂^{+.64} The related compounds I₂(OSO₂F) and I₇(OSO₂F) have been reported, the latter being a polymer in the liquid state.⁹⁵ An X-ray crystal structure of I(OSO₂F)₂I has confirmed the existence of covalent bonds.⁸³

Oxidative addition of halogen or interhalogen to I-(OSO₂F) produces IX₂(SO₃F) and I₂X(SO₃F), which are apparently ionic solids, forming solvated IX₂⁺ and I₂X⁺ solvated cations in FSO₃H.⁹⁷ The I(OSO₂F)₂⁺ cation can be generated by reaction of I(OSO₂F)₃ via

$$\frac{\mathrm{Sn}(\mathrm{OSO}_2\mathrm{F})_4 + 2\mathrm{I}(\mathrm{OSO}_2\mathrm{F})_3}{[\mathrm{I}(\mathrm{OSO}_2\mathrm{F})_2][\mathrm{Sn}(\mathrm{OSO}_2\mathrm{F})_6]} (12)$$

performed in S₂O₆F₂ solvent for several days at room temperature.⁶⁴ A reaction of BrSO₃F in excess Sn(O-SO₂F)₄ yields eventually the Br(III) analogue,⁶⁴ where oxidation of Br(I) by S₂O₆F₂ must be involved. Reactions involving peroxydisulfuryl difluoride most likely involve the FSO₂O· radical,⁹⁸ which can act as an efficient oxidant. The $I(OSO_2F)_4^-$ anion may be generated by reaction of (perfluoroalkyl)iodine fluorosulfate with $(CF_3)_2CFI.^{92}$

4. Other Main-Group Elements

A wide range of polyfluorides also incorporating RSO_3^{-} have been studied, almost exclusively by ¹⁹F NMR spectroscopy in solution. The octahedral compounds of P(VI), As(VI), Ge(VI), S(VI), Se(VI), Sb(V), and Sn(IV) with RSO_3^{-} bound are known, with usually unidentate coordination. Species apparently observed include $PF_5(OSO_2R)$,^{57,59} AsF₅(OSO_2R),^{57,59} SeF₅-(OSO_2R),⁹⁹ *cis*- and *trans*-SnF₄(OSO_2R),^{2⁻,59} *cis*- and *trans*-GeF₄(OSO_2R),⁵⁸ SbF₅(OSO_2F),^{56,101,102} and SbF₂-(OSO_2R),^{4⁻,101} Apparently dimeric species of octahedral Sb(V) form with bridging bidentate RSO_3^{-} , namely SbCl₄(OSO_2R),¹⁰⁴ SbF₃(OSO_2R),¹⁰⁴ SbF₄(OSO_2R),¹⁰⁴ and Sb₂F₉(OSO_2R),¹⁰⁴ with structures assigned largely on the basis of IR and Raman spectroscopy.

Reaction of CF_3SO_3X (X = Cl, Br) with covalent inorganic chlorides such as COCl₂ and SiCl₄ give excellent yields of (CF₃SO₃)₂CO and (CF₃SO₃)₂SiCl₂.96 CF₃SO₃Cl also oxidatively adds to unsaturated inorganic compounds such as CO and SO₂ to yield CF_3S - O_3COCl and $CF_3SO_2OSO_2Cl$, respectively; the reactivity of FSO₂OBr is similar.⁹⁶ Synthesis, properties, and reactions of the imide (CF₃SO₃)₂NH have recently appeared.¹⁰⁵ The compounds TI(OSO₂CF₃)₃ and M- $(OSO_2F)_3$ (M = Bi, Ga, In, Tl) are known, ¹⁰⁶⁻¹⁰⁹ where bidentate bridging RSO₃⁻ is suggested. Adducts of these with ligands such as pyridine, dimethyl sulfoxide, and pyridine oxide form readily.^{107,109} Some organo-maingroup compounds coordinating RSO₃⁻ are also known, namely (CH₃)₃Si(OSO₂CF₃),^{96,110} (CH₃)₃Ge(OSO₂CF₃),¹¹¹ and arylthallium trifluoromethanesulfonates.¹⁰⁸ All the above species rely largely on vibrational spectroscopy for evidence of RSO_3^- coordination. The distinction between ionic and covalent nature cannot be clearly drawn, since many compounds have no lengthy existence outside the solid state and dissociate or react readily in solution. Nevertheless, covalent bonding of $CF_3SO_3^-$ and FSO_3^- to a range of main-group elements under favorable circumstances has been firmly established, and presages like coordination with metal complexes.

C. Organometallic Compounds

In a little over a decade, a large number of reports of metal-carbon bonded species also incorporating an M-OSO₂R bond have appeared. Several of these compounds have been characterized by X-ray crystalstructure analysis, while others have been identified by spectroscopic methods or else their existence as intermediates has been implied by reactivity trends of the compound in comparison with other coordinated monoanions. The two most common methods of synthesis are either direct replacement of other ligands by RSO₃⁻ or else oxidative addition of the ester RSO_3CH_3 or acid RSO_3H to a low-valent metal complex. Also included in this section must be the Cu(I) and Ag(I) trifluoromethanesulfonates which form complexes with organic molecules like benzene where M-OSO₂R bonds exist; these species are efficient catalysts of several organic reactions.

1. Displacement Reactions

Reaction of the gold(III) complex $(H_3C)_3Au(PR'_3)$, where $R' = C_6H_5$, in benzene with anhydrous acids at room temperature yields particularly $(H_3C)_2Au$ - $(PR'_3)(OSO_2CF_3)$ and CH_4 ;¹¹² selective displacement of the alkyl group cis to the $P(C_6H_5)_3$ ligand occurs, presumably due to activation of that site from the trans effect of the CH_3^- ligand. This gold(III) complex, detected by NMR spectroscopy at low temperature, undergoes spontaneous reductive elimination of C_2H_6 with formation of the gold(I) compound $(CF_3SO_3)Au(PR'_3)$; reactivity with coordinated trifluoromethanesulfonate is substantially greater than with other coordinated anions. In a similar system,⁷⁶ reaction of $[(H_3C)_2AuI]_2$ occurs via eq 13. The intermediate here is isolable, and

$$[(H_{3}C)_{2}AuI]_{2} + 2Ag(OSO_{2}CF_{3})^{1}/_{2}C_{6}H_{6} - - - C_{6}CF_{3})]_{2} + 2AgI$$

$$[(H_{3}C)_{2}Au(OSO_{2}CF_{3})]_{2} + 2AgI$$
(13)

 $2C_2H_6 + 2Au(OSO_2CF_3)$

the dimeric structure was assigned on the basis of molecular weight measurements; presumably bidentate bridging trifluoromethanesulfonate exists to complete a square-planar geometry about each Au(III) center. Recrystallization from pentane/toluene yields the monomer $(H_3C)_2Au(OH_2)(OSO_2CF_3)$ rather than the dimer, indicating the sensitivity of bridging $CF_3SO_3^-$ to even traces of water. In toluene/benzene with transcyclooctene, reaction generates C_2H_6 and (trans- C_8H_{14})₃Au(CF₃SO₃), where the triflate is apparently ionic. The (H₃C)₂Au(OH₂)(OSO₂CF₃) compound does contain unidentate O-bound CF_3SO_3 , however, determined from an X-ray crystal structure analysis;⁷⁶ the Au(III)-OSO₂CF₃ bond (2.201 Å) is somewhat longer than the Au-OH₂ bond (2.157 Å). A relatively long M-OSO₂CF₃ bond (2.271 Å) was also reported in the crystal structure of the Pd(II) complex (diethylamine)[3-(diethylamino)propionyl trifluoromethanesulfonato]palladium(II),⁸² and these observations are consistent with the expected low degree of nucleophilicity of $CF_3SO_3^{-}$.

Rapid displacement of the η^3 -allyl ligand occurs when Mn[P(OCH(CH₃)₂)₃]₂(η^3 -C₃H₅)(CO)₂ is reacted with excess CF₃SO₃H in ether.¹¹³ The product Mn[P(OCH-(CH₃)₂)₃]₂(CO)₂(OSO₂CF₃) is presumed to involve pseudooctahedral Mn(I), so a bidentate CF₃SO₃⁻ in various stereoisomers such as 10 has been proposed.

Such a coordination geometry for $CF_3SO_3^-$ would be quite strained, and a dimer with bidentate but bridging $CF_3SO_3^-$ may be an option. With CF_3SO_3H , $HMn(CO)_5$ yields $Mn(CO)_5(OSO_2CF_3)$ and H_2 , with the trifluoromethanesulfonate ion probably occupying the sixth coordination site as a unidentate,¹¹⁴ although it is readily displaced by CO.

Reaction of $Ta(CC(CH_3)_3)(DMPE)_2Cl$ (DMPE = (H₃C)₂PCH₂CH₂P(CH₃)₂) with CF₃SO₃H yields [Ta- $(CHC(CH_3)_3)(DMPE)_2(OSO_2CF_3)$];⁷⁵ differential vapor pressure molecular weight determination in tetrahydrofuran is consistent with the complex being neutral and the trifluoromethanesulfonate coordinated. At low temperature, the intermediate 11 is presumed to form prior to insertion of H⁻ into the carbon-bonded ligand. In CF_3SO_3H at 0 °C, $Pt(PR_3)_2(C_2H_4)$ reacts to release C_2H_6 and C_2H_4 . The intermediate Pt(II) complex reacts with LiCl in acetone to form $Pt(PR_3)_2Cl_2$, and coordinated CF₃SO₃⁻ is presumed to be involved in the intermediate;¹¹⁵ the proposed intermediate is $Pt(PR_3)_2$ - $(H)(OSO_2CF_3)$ or a bis(trifluoromethanesulfonato) analogue, since the former is known to form separately by reaction of $Pt(PR_3)_2(H)Cl$ with $Ag(CF_3SO_3)$. The Ru(II) compounds $Ru(CO)_2Cl_2(LL)$ and $Ru(CO)_2(O Ac_{2}(LL)$ (LL = phen, bpy) both react smoothly with neat CF₃SO₃H upon heating to generate cis,cis-Ru- $(CO)_2(LL)(OSO_2CF_3)_2$ complexes,^{116,117} with further displacement of coordinated CF₃SO₃⁻ possible. Likewise, reaction of $Fe(cp)(CO)[P(CH_3)_3][C(Si(CH_3)_3)=$ C=O], where cp = cyclopentadienyl anion, with trifluoromethanesulfonic acid yields Fe(cp)(CO)[P-(CH₃)₃](OSO₂CF₃).¹¹⁸ A related iron(II) compound, $(\eta^{5}$ -pentamethylcyclopentadienyl)(trifluoromethanesulfonato)iron(II) dicarbonyl, has been characterized structurally, and the $Fe-OSO_2CF_3$ bond (2.007 Å) is clearly indicative of covalent bonding.⁸⁰ Field-desorption mass spectrometry of this compound showed that the coordinated $CF_3SO_3^-$ was present in the molecular ion.¹¹⁹ Chiral $Re(cp)(NO)(PR'_3)(CH_3)$ with CF_3SO_3H forms CH_4 and $Re(cp)(NO)(PR'_3)(OSO_2CF_3)$ with optical retention, and the molecular ion with bound $CF_3SO_3^-$ appears in the mass spectrum.¹²⁰ Also, $FSO_3^$ can increase the coordination number of several carbonyls by binding reversibly, as indicated from lowtemperature NMR spectroscopy.¹²¹

Reaction of Cu₂O, carbon monoxide, and sulfonic acids including CF₃SO₃H yields reasonably stable species of formula Cu(CO)(SO₃R).¹²² The X-ray structure of the ethanesulfonic acid complex shows the copper(I) is four-coordinate tetrahedral, with infinite chains and the RSO₃⁻ bound by all three oxygen atoms to copper(I) ions. The ability of copper(I) to bind sulfonates will be addressed again later with respect to $M(CF_3SO_3)$ -organics.

Reaction of coordinated halides with silver trifluoromethanesulfonate in an appropriate inert solvent has been successfully applied on several occasions. With a cyclopentadienyl Ti(IV) complex, the reaction⁸⁶

$$(\pi - C_5 H_5)_2 \operatorname{TiCl}_2 + 2\operatorname{Ag}(\operatorname{CF}_3 \operatorname{SO}_3) \rightarrow (\pi - C_5 H_5)_2 \operatorname{Ti}(\operatorname{OSO}_2 \operatorname{CF}_3)_2 + 2\operatorname{AgCl} (14)$$

occurs where the tetrahedral Ti(IV) has two covalently bound $CF_3SO_3^-$, characterized by crystal structure analysis. Reaction of thienylchloromercury(II) with $Ag(CF_3SO_3)$ produces a thienyl(trifluoromethanesulfonato)mercury(II) intermediate,¹²³ which readily decomposes at room temperature to (2,2'-dithienyl)mercury(II). Coordinated trifluoromethanesulfonate may also occur in a mercury phosphine oxide.¹²⁴ Certainly coordination of $CF_3SO_3^-$ to mercury(II) has been observed following reaction of $[Hg(Me_2SO)_6](CF_3SO_3)_2$ with benzene, to form the $(C_6H_5)Hg(Me_2SO)_2^ (OSO_2CF_3)$ compound, since the cation $[(C_6H_5)Hg(OSO_2CF_3)]^+$ was detected in the mass spectrum.¹²⁵ Reaction of the same starting material in methanol with C_2H_4 yields the (2-methoxyethyl)(trifluoromethanesulfonato)mercury(II) compound.

2. Oxidative Addition Reactions

Square-planar d⁸ iridium(I) compounds react with H_3COSO_2R to give oxidative addition products. The compound trans-Ir(CO)Cl(PR'3)2 oxidatively adds both CF₃SO₃CH₃ and FSO₃CH₃ to form highly labile iridium(III) products $IrCl(CO)(PR'_3)(CH_3)(OSO_2R)$, where the configuration 12 is apparently adopted. $^{\tilde{126},\tilde{127}}$ Oxidative addition to the trans- $Ir(CO)Br[P(C_6H_5)_3]_2$ analogue has also been studied.¹²⁸ With trans- $IrCl(N_2)$ - $(PR'_3)_2$, trans addition of RSO_3CH_3 yields the apparently octahedral intermediate IrCl(OSO₂R)- $(CH_3)(N_2)(PR'_3)_2$.^{48,129} The conditions of reaction, where the reactants are mixed in benzene at 77 K and allowed to warm to room temperature, does not lead to displacement of dinitrogen, although further reaction with other coordinating anions in methanol appears to generate a five-coordinate species that readily forms an adduct with carbon monoxide. Oxidative addition of RSO_3CH_3 to other low-valent metals is possible; for example, (cp)Co(CO)₂ with FSO₃CH₃ yields (cp)(CO)-Co(CH₃)(OSO₂F).¹³⁰

Certain reactions involve both oxidative addition of RSO_3CH_3 and concomitant displacement of other ligands and are best described as oxidative elimination reactions:

For example, $(cp)_2 Zr[P(CH_3)(C_6H_5)_2]_2$ mixed with FSO_3CH_3 in deuteriobenzene loses two $P(CH_3)(C_6H_5)_2$ ligands, and the Zr(II) is oxidized to Zr(IV) during addition.¹³¹ Some $(cp)_2 Zr(OSO_2F)_2$ is also detected in this reaction. Likewise, $Pt(PR'_3)_3$ with FSO_3CH_3 forms $Pt(PR'_3)_2(CH_3)(OSO_2F).^{132}$

Apart from oxidative addition, it is apparent that other reactions may occur when using the acid esters. Halogen abstraction reactions may occur; for example, mer-Rh(P(CH₃)₂C₆H₅)₃Cl₃ with FSO₃CH₃ produces simply mer-Rh($\tilde{P}(\tilde{C}H_3)_2C_6H_5$) $_3Cl_2(OSO_2F)$, characterized by NMR and IR spectroscopy.^{61,132} This is essentially the reaction operating also when trans-PtCl- $(H)(PR_3)_2$ reacts with FSO_3CH_3 in benzene in the presence of $H_5C_6C \equiv CC_6H_5$, since the major product is $Pt(H_5C_6C = CHC_6H_5)(PR'_3)_2(OSO_2CF_3).^{133}$ Oxidation of the metal atom has been observed for MoCl₂(DPE)₂ with FSO₃CH₃, since [MoCl₂(DPE)₂](SO₃F) is the product.¹³² Alkylation of a coordinated ligand is also a possibility, as observed when ferricyanide reacts with FSO_3CH_3 , forming $[Fe(CN)(CNCH_3)_5](SO_3F)_2$.¹³² The attempted oxidative addition of FSO₃CH₃ to (cp)Fe- $(CO)_2^-$ did not generate $(cp)Fe(CO)_2(CH_3)(OSO_2F);$ rather, the S-methoxysulfenate complex $(cp)Fe(CO)_{2}$ - (SO_2CH_3) was identified by NMR and IR spectroscopy,¹³⁴ so S-F cleavage must be involved.

Apart from the methyl esters, the free acids HOSO₂R can oxidatively add to iridium(I) complexes. Treatment of IrCl(CO)(PR'₃)₂ with HOSO₂F generated the Ir(III) compound IrCl(CO)(PR'₃)₂(H)(OSO₂F).¹³⁵ Likewise, Ir(PR'₃)₂LCl (L = CO, N₂) oxidatively adds various acids to form Ir(PR'₃)₂LCl(H)(X).¹³⁶⁻¹³⁸ The compounds formed are apparently of structure 13, since the X-ray crystal structure of the X = BF₄⁻ compound is of this geometry.¹³⁸

It is notable that, apart from iridium(I), few reports of oxidative addition of RSO_3H or RSO_3CH_3 to square-planar d⁸ compounds have appeared. Given the facility of this type of compound for oxidative addition, it is reasonable to expect that like reactions should occur with other d⁸ metal ions.

3. Copper(I) and Silver(I) Compounds

The benzene solvate of copper(I) trifluoromethanesulfonate has received particular attention due to its value as a catalyst. $[Cu(trif)]_2 C_6 H_6$ has been used for promoting relatively mild acylations of arenes and heterocycles by selenol esters¹³⁹ and for selectively forming biaryls,¹⁴⁰ it is a highly active catalyst for the cyclopropanation of olefins with diazo compounds¹⁴¹ and is often superior to $BF_3 \cdot OEt_2$ for transformations of diazo compounds.¹⁴² In the penultimate example, the unique selectivity was attributed to coordination of olefins by the electrophilic copper(I) compound; likewise, the silver (I) analogue activates sp C-H bonds in terminal alkynes by π -coordination.¹⁴³ The [Cu(OS- O_2CF_3]₂· C_6H_6 compound was shown by vapor pressure osmometry to be undissociated in solution,⁷¹ and a crystal structure analysis showed it consists of infinite chains of $Cu(OSO_2CF_3)$ units cross-linked in sheets by benzene molecules, with each trifluoromethanesulfonate oxygen bound to a copper(I) ion.⁸⁷ The X-ray crystal structure of the related copper(I) trifluoromethanesulfonate cyclohexene complex has also appeared recently.⁸⁸

The silver(I) analogue of the copper(I) system has been studied,¹⁴⁴ while various other synthetic^{145–147} and photochemical¹⁴⁸ reports involving copper(I) trifluoromethanesulfonate have appeared. Mixed copper(I)– silver(I) hexanuclear clusters with $CF_3SO_3^-$ as bidentate or monodentate bridging ligands have also been prepared.¹⁴⁹ While detailed review of this specialized area is beyond the scope of this review, it is notable that the enhanced solubility of both coordinated and ionic trifluoromethanesulfonate compounds and the resistance of $CF_3SO_3^-$ to redox reactions are likely to be important factors in the success of these catalysts.

D. Coordination Complexes

1. Simple Displacement Reactions

By far, the majority of examples of coordinated RSO_3^- arise from the simple substitution of a RSO_3^- for some other coordinating anion or molecule. This displacement can be generally represented as

$$[ML_m X_y]^{n+} + yHOSO_2 R \rightarrow [ML_m(OSO_2 R)_y]^{n+} + yHX$$
(16)

With displaced ions such as Cl⁻ or Br⁻, the product HX

may be readily removed from the RSO_3H solution in a stream of inert gas³³ and the product precipitated by addition of ether at or below room temperature. However, the reaction need not be restricted to halides; most oxyanions can be displaced, although consideration must be given to hazards arising from release of certain anhydrous acids such as $HCIO_4$. With an excess of anhydrous acid, reaction usually proceeds to completion at or above room temperature. Neutral ligands may also be displaced; coordinated water may be replaced simply by heating RSO_3^- salts of aqua complexes,³⁵ as in

$$[Co(NH_3)_5(OH_2)](CF_3SO_3)_3 \xrightarrow{2} \\ [Co(NH_3)_5(OSO_2CF_3)](CF_3SO_3)_2 + OH_2^{\dagger} (17)$$

Although the methods have not been applied, in principle reaction of halo complexes or sulfato complexes with silver and barium salts of RSO_3^- , respectively, in poorly coordinating solvent may lead to bound $RSO_3^$ following removal of the halide as insoluble AgX and removal of the sulfate as insoluble Ba(SO₄). The latter techniques may be appropriate where the precursor or product are acid or heat sensitive and hence not approachable by normal routes.

Displacement reactions reported can be subdivided into two groups: those with largely amine donors in the nonparticipating coordination sites and those with other donors in those sites.

(a) Complexes with Bound RSO₃⁻ Not Incorporating Amine Donors. Fluorosulfato and trifluoromethanesulfonato complexes of the early members of the d-block are quite well represented. Reaction of TiCl₃(OCH₃) with HOSO₂F produces TiCl₂(OCH₃)(O- SO_2F);¹⁵⁰ the 1:1 adducts with pyridine, 1,2-ethanediamine, and dimethyl sulfoxide show evidence for bound FSO_3^- from IR data, although the precursor appears to involve FSO_3^- of C_{3v} symmetry, suggesting tridentate coordination or ionic character. Titanium tetrachloride reacts with excess FSO₃H to form TiCl₂(OSO₂F)₂;⁷⁸ $TiCl_3(OSO_2CF_3)$, $TiCl_2(OSO_2CF_3)_2$, and $TiCl(OSO_2CF_3)$ are also known.^{110,151} With titanium in excess, $TiCl_4$ with FSO₃H produces a compound of stoichiometry $TiCl_{3,33}(OSO_2F)_{0.66}$.⁷⁸ The unprecedented coordination of FSO_3^- by all oxygens and fluorine was claimed,⁷⁸ but seems highly unlikely. Structural assignments for these compounds in general are not well established.

Both $Zr(OSO_2CF_3)_4$ and $Th(OSO_2CF_3)_4$ have been reported.¹¹⁰ Reaction of Zr(IV) acetate with FSO₃H produced $\operatorname{Zr}(\operatorname{OAc})_n(\operatorname{OSO}_2F)_{4-n}$, n = 1-4,¹⁵² where both bidentate and tridentate FSO3⁻ are implied in various cases. With VCl₃, FSO₃H produces hexacoordinate $V(OSO_2F)_3$ with bidentate FSO_3^{-153} which readily forms adducts with neutral coordinating molecules; vanadium(III), oxovanadium(IV), and oxovanadium(V) CF3-SO₃⁻ analogues are also known.¹⁵³ CF₃SO₃⁻ displaces CF_3COO^- from $CrO_2(OOCCF_3)_2$ to form involatile and sparingly soluble $\tilde{C}rO(OSO_2^{\circ}CF_3)_2$, a polymer with bridging $CF_3SO_3^-$ assigned from IR and electronic spectroscopy.⁴⁷ Reaction of hexaquochromium(III) with $9 \text{ M CF}_3 SO_3 H$ and chromatography on cation-exchange resin detected the $Cr(OH_2)_5(OSO_2CF_3)^{2+}$ ion and small amounts of higher complexes at higher concentrations of acid;¹⁵⁴ CF₃SO₃⁻ is displaced faster than NO₃⁻ but slower than ClO_4^- in the pentaaquachromium(III) system.

The heavier elements also coordinate RSO₃⁻. Pt-(PR'₃)₂Cl₂ with CF₃SO₃H forms Pt(PR'₃)₂Cl-(OSO₂CF₃).¹¹⁵ Uranyl acetate and thorium(IV) acetate yield species such as UO₂(SO₃F)₂ and Th(SO₃F)₄; uranium compounds in other oxidation states, UO(SO₃F)₂, U(SO₃F)₄, and U(SO₃F)₆²⁻, also are apparently present.^{156,157} Structural characterization of the f-block compounds, based principally on IR spectroscopy, does not permit concrete assignment of coordination geometry.

(b) Amine Complexes with Coordinated RSO₃⁻. Inert and usually octahedral metal complexes with principally N-donor amine (or in some cases imine) ligands can coordinate RSO₃⁻ as a unidentate ligand. Commonly, reaction of the chloro analogue with anhydrous acid generates the required complex. Characterization of such compounds has usually been by a combination of infrared, electronic and NMR spectroscopy, elemental microanalysis, and reactivity trends. The RSO₃⁻ ions are relatively labile, and up to three have been coordinated to inert metal ions with N-donors in the other sites. Almost all reported examples involve d³, d⁵, or d⁶ metal ions, overwhelmingly with CF₃SO₃⁻ bound.

Iron(III) meso-tetraphenylporphyrinate trifluoromethanesulfonate has been reported in an uncommon d^5 intermediate spin state;^{158,159} structural characterization of the weakly coordination ClO_4^- analogue¹⁵⁸ strongly indicates $CF_3SO_3^-$ bonding occurs also. To date, no X-ray crystal structure of an amine complex with coordinated $CF_3SO_3^-$ has appeared. However, such structures for organometallic compounds are known, and other physical evidence has made the case for RSO_3^- coordination indisputable in this area.

With d⁶ cobalt(III) amines, quite a number of examples have appeared in recent years. The simple complexes $[Co(NH_3)_5(OSO_2CF_3)]^{2+}$ and $[Co(NH_3)_5^{-}]^{2+}$ (OSO₂F)]²⁺ have both been prepared and characterized, 26,49,160,161 and the OClO₃⁻ analogue is known.¹⁶² In the absence of moisture, these compounds exist as stable solids. The d⁶ analogues of Rh(III), Ir(III), and Pt(IV) have been reported,¹⁶¹ as well as the Ru(II)¹⁶³ and $Os(II)^{164}$ analogues. The d³ Cr(III) pentaammine¹⁶¹ and the d⁵ Ru(III)^{161,163} and Os(III)¹⁶⁴ pentaammines are also known. Pentakis(methylamine) analogues of the pentaammines of Co(III), Rh(III), and Cr(III) were prepared by reaction of the chloro precursors with CF_3SO_3H at or above room temperature for several days.¹⁶¹ Reaction of the Cr(III) and Co(III) complexes at elevated temperature, which is normally employed for the ammine complexes, causes some alkylamine ligand dissociation in these cases.

Bis(trifluoromethanesulfonato) bis(ethane-1,2-diamine) complexes of Co(III), Rh(III), and Ir(III) form from reaction of the chloro precursors at elevated temperature in the anhydrous acid for extended periods.¹⁶¹ The cis stereochemistry occurs, and may be confirmed from ¹H and ¹³C NMR in CF₃SO₃H as solvent. The similar electronic spectra of *cis*-Co(en)₂(OSO₂CF₃)₂⁺ and *cis*-Co(tren)(OSO₂CF₃)₂⁺¹⁶⁵ (tren = N,N-bis(2-aminoethyl)-1,2-diaminoethane) further confirm the stereochemistry in the former, since only the cis stereochemistry may exist in the latter complex. While the cis geometry is preferred because cis complexes are more stable in polar solvents than trans isomers,¹⁶⁶ *trans*-

TABLE III. Electronic Spectra of Inert Transition-Metal Amine Complexes Containing Coordinated Trifluoromethanesulfonate in Anhydrous CF_3SO_3H

complex	λ , nm (ϵ , M ⁻¹ cm ⁻¹)	ref	
 $C_0(NH_3)_5(OSO_2CF_3)^{2+}$	524 (45.8), 465 sh (33), 345 (40.6)	49	
$Rh(NH_3)_5(OSO_2CF_3)^{2+}$	333 (103), 267 (84)	161	
$Ir(NH_3)_5(OSO_2CF_3)^{2+}$	315 sh (150), 270 (22)	161	
$Cr(NH_3)_5(OSO_2CF_3)^{2+}$	499 (36.8), 364 (31.7)	161	
$Ru(NH_3)_5(OSO_2CF_3)^{2+}$	284 (790)	161	
$Os(NH_3)_5(OSO_2CF_3)^{2+}$	447 (50), 290 sh (108), 235 (843)	202	
$Pt(NH_3)_5(OSO_2CF_3)^{3+}$	299 (186)	161	
$C_0(NH_2CH_3)_5(OSO_2CF_3)^{2+}$	542 (58.9), 490 sh (51), 362 (67.3)	161	
$Rh(NH_2CH_3)_5(OSO_2CF_3)^{2+}$	335(142), 275(144)	161	
$Cr(NH_2CH_3)_5(OSO_2CF_3)^{2+}$	506 (49.1), 374 (45.8)	161	
cis-Co(en) ₂ (OSO ₂ CF ₃) ₂ ⁺	590 sh (33), 508 (80.1), 374 (105.3)	49	
cis-Rh(en) ₂ (OSO ₂ CF ₃) ₂ ⁺	321 (193), 271 (142)	161	
cis-Ir(en) ₂ (OSO ₂ CF ₃) ₂ ⁺	464 sh (10), 368 sh (34), 296 sh (142), 272 (184), 243 (156)	161	
cis-Cr(en) ₂ (OSO ₂ CF ₃) ₂ ⁺	497 (69.8), 380 (42.7)	161	
cis-Co(tren)(OSO ₂ CF ₃) ₂ ⁺	516 (122), 371 (93)	165	
$trans-Rh(en)_{2}Cl(OSO_{2}CF_{3})^{+}$	407 (43), 270 sh (127)	161	
trans-Ir(en) ₂ Cl(OSO ₂ CF ₃) ⁺	502 sh (16), 428 sh (25), 334 (51), 275 sh (60), 241 (110)	161	
fac-Co(dien)(OSO ₂ CF ₃) ₃	553 (108.5), 385 (57.3)	49	
fac-Co(tacn)(OSO ₂ CF ₃) ₃	556 (115), 383 (60)	209	

Ir(en)₂(OSO₂CF₃)Cl⁺ is known,¹⁶¹ and reaction of trans-Co(en)₂Cl₂⁺ with CF₃SO₃H at or below 0 °C can generate trans-Co(en)₂(OSO₂CF₃)Cl⁺,¹⁶⁷ although when the temperature is raised, isomerization to the cis complex and further halide substitution occur. With Co-(dien)Cl₃ (dien = 1,5-diamino-3-azapentane) and CF₃-SO₃H, a neutral compound, Co(dien)(OSO₂CF₃)₃, with three-coordinated CF₃SO₃⁻ was isolated.⁴⁹ Assignment of a fac geometry to this complex was later supported by synthesis of Co(tacn)(OSO₂CF₃)₃¹⁶⁸ (tacn = 1,4,7-triazacyclononane), the ligand of which must coordinate with fac geometry since the electronic spectra of the two complexes are very similar.

The d⁶ cis-[Ir(bpy)₂Cl₂]Cl with CF₃SO₃H yields the cis-[Ir(bpy)₂(OSO₂CF₃)₂](CF₃SO₃) complex,¹⁶⁹ and similar chemistry with ruthenium and osmium diimines $M(bpy)_2(OSO_2CF_3)_2^{0/1^+}$ has been explored.^{170,171} Reports of complexes of ruthenium and osmium amines or imines with coordinated CF₃SO₃⁻ are expanding;^{28,116,117,161,170–174} these complexes have already been used for further syntheses and will be described in detail in a later section. Apart from d³, d⁵, and d⁶ metal complexes, one example of a d⁸ metal ammine is known: Pt(en)(Cl)(OSO₂CF₃) was made from the dichloro precursor reacting with CF₃SO₃H at elevated temperatures.¹⁷⁵

The collected electronic spectra of inert amine complexes with coordinated trifluoromethanesulfonate (Table III) have permitted an accurate placement of $CF_3SO_3^{-}$ in spectrochemical series. By comparison with other pentaammine complexes, 176 trifluoromethane-sulfonate can be placed between Cl⁻ and N₃^{-,161} Further, ligand field parameters Δ and B were estimated from the energies of the first two symmetric ligand field bands of Rh(NH₃)₅(OSO₂CF₃)²⁺, assuming octahedral character for the $({}^{1}A_{1g} \rightarrow {}^{1}T_{1g} \text{ and } {}^{1}A_{1g} \rightarrow {}^{1}T_{2g})$ transitions. This yielded $\Delta = 31\,300 \text{ cm}^{-1}$ and $B = 506 \text{ cm}^{-1}$, with a nephelauxetic ratio $\beta_{35} = 0.70$.¹⁶¹ The high value of β_{35} , compared with other rhodium complexes, is indicative of a very low nephelauxetic effect for $CF_3SO_3^-$. This high β_{35} is evidence for a relatively very low covalent contribution to bonding, and together with the low energy of the purely electrostatic component of bonding defined from the observed Δ , allows for ready removal of $CF_3SO_3^{-}$. Lower values of β_{35} for weak field and comparatively soft ligands like SCN⁻ and N_3^- in-

cis-[M(en)2(CO3)]CI

trans-[M(en)2CI(OSO2CF3)](CF3SO3)

^a (A) M = Co^{III}, Rh^{III}, Ir^{III}, Ru^{III}, Pt^{IV}; (i) CF₃SO₃H, ~100 °C, h (ii) ether, ~5 °C. (B) M = Cr^{III}; (i) CF₃SO₃H, ~25 °C, days (ii) ether, ~5 °C. (C) M = Co^{III}, Rh^{III}; solid, ~110 °C, h. (D) M = Os^{III}; (i) CF₃SO₃H, ~100 °C, h (ii) ether, ~5 °C. (E) M = Ru^{III}, Os^{III}; 2n(Hg), acetone. (F) M = Co^{III}, Rh^{III}, Ir^{III}, Cr^{III} and LL = en; M = Co^{III} and (LL)₂ = tren; M = Ir^{III}, Ru^{III}, Os^{III} and LL = bpy; (i) CF₃SO₃H, ~100 °C, h (ii) ether, ~5 °C. (G) M = Co^{III}; (i) CF₃SO-O₃H, ~100 °C, h (ii) ether, ~5 °C. (H) M = Co^{III}; (i) CF₃SO-O₃H, ~100 °C, h (ii) ether, ~5 °C. (I) M = Co^{III}; (i) CF₃SO-O₃H, ~25 °C, min (ii) ether. (I) M = Co^{III}; (i) CF₃SO₃H, ~-20 °C, h (ii) ether. M = Rh^{III}, Ir^{III}, (i) CF₃SO₃H, ~100 °C, h (ii) ether, ~5 °C. (J) M = Co^{III}; (i) CF₃SO₃H, ~100 °C, h (ii) ether, ~5 °C.

dicate a greater covalent contribution, which enhances stability of the M-L bond in those cases.

The common methods of synthesis developed for producing inert metal amine complexes with coordinated trifluoromethanesulfonate are collected in Scheme I for pentamine and bis(diamine) compounds. At present, only one example with coordinated fluorosulfate has appeared,²⁶ and the decomposition of the coordinated ligand in dilute aqueous acid in that case clearly indicates that $CF_3SO_3^-$ is a better choice when one wishes to use the complexes for further reactions.

2. Reactions with Anhydrides and Esters

The anhydride of trifluoromethanesulfonic acid, $(CF_3SO_2)_2O$, and the ester $CF_3SO_3CH_3$ have been employed in synthesis. Reaction of salts of high oxidation state oxo compounds of Cr, W, Mo, and Ti with $(CF_3-CF_3)_2O$.

SO₂)O yields $MO_2(OSO_2CF_3)_4^{2-}$ (M = Cr, Mo, W), $CrO_2(OSO_2CF_3)_3$, and $Ti(OSO_2CF_3)_6^{2-,177}$ while $Cr(C-CC_3)_6^{2-,177}$ where $Cr(C-CC_3)_6^{2-,177}$ F_3SO_3)₃ can be made by refluxing $CrO_2(OSO_2CF_3)_3$ in the anhydride.⁴⁷ Unidentate or bidentate coordination in various species is implied in these octahedral complexes from IR spectroscopy. Reaction of HgO and $(CF_3SO_2)_2O$ with $(C_6H_5)N(CH_3)_2$ at -20 °C yields Hg- $(OSO_2CF_3)_2 \cdot (C_6H_5)N(CH_3)_2$,¹⁷⁸ a new olefin cyclization agent, where coordination of trifluoromethanesulfonate is implied. Room temperature reaction of $Mo_2(OOCH)_4$ with acid and anhydride for several days produces the dimer $[Mo_2(OH_2)_4(OSO_2CF_3)_2]^{2+}$, where bidentate bridging CF₃SO₃⁻ is implied from IR spectroscopy.¹⁷⁹ The reactivity of trifluoromethanesulfonic anhydride allowed reaction of 1 equiv with $\{Fe_4S_4[S(C_6H_5)]_4\}^{2-}$ in an aprotic solvent to proceed with displacement of one $C_6H_5S^-$ ligand to give the cluster $\{Fe_4S_4[S(C_6H_5)]_3^-\}$ (OSO_2CF_3) ²⁻, whose redox couple differs by ~0.1 V from the parent,¹⁸⁰ thus defining the substitution process.

3. Oxidation-Coordination Reactions

Peroxydisulfuryl difluoride, employed successfully with main-group compounds for introducing coordinated fluorosulfate, has also been applied successfully on a limited scale with metal compounds. Even gold metal is oxidized in excess $S_2O_6F_2$ to yield Au(SO₃F)₃.¹⁸¹ The metal(0) carbonyls of V, Cr, Fe, Mn, and Co are oxidized by $S_2O_6F_2$ also, with $VO(SO_3F)_3$, $Cr(SO_3F)_3$, $Mn(SO_3F)_4$, $Co(SO_3F)_2$, $FeO(SO_3F)$, and $Fe(CO)_4(S O_3F)_2$ isolated.¹⁸² The last compound, when heated to 100 °C, dissociates CO to form $Fe(SO_3F)_2$. From IR spectroscopy, evidence for more than one type of bound FSO_3^- is forthcoming; for example, $VO(FSO_3)_3$ appears to contain both monodentate and bidentate ions. Interpretations are colored somewhat by expectations based on the conventional coordination numbers for these metal ions. All of $W(CO)_6$, $WOCl_4$, and WCl_6 react with $S_2O_6F_2$ to produce polymeric $WO(FSO_3)_4$,⁶⁰ assigned as six-coordinate W(VI) with bridging $FSO_3^$ from ¹⁹F NMR and Raman spectroscopy. Various Ir-(III) and Ir(IV) complexes derive from extended reactions in $S_2O_6F_2/FSO_3H$, namely $Ir(SO_3F)_3$, $Ir(SO_3F)_4$, and $Ir(SO_3F)_6^{2^-.74}$ Metal carbonates react according to

$$2\text{MCO}_3 + \text{S}_2\text{O}_6\text{F}_2 \rightarrow 2\text{MO}(\text{FSO}_3) + 2\text{CO}_2 \quad (18)$$

for M = Mn, Co, and Ni, while $Ag_2O(FSO_3)$ forms from Ag_2CO_3 in a like manner.¹⁸³ Similarly, cerium(III) carbonate yields $CeO(FSO_3)$ with covalent $FSO_3^{-.184}$ Peroxydisulfuryl difluoride is related to peroxydisulfate, since both contain $Y-O_2-Y$ units; both are good oxygenating agents, and there are obviously some similarities in their reactivities.

Oxidation of gold with excess liquid $BrSO_3F$ forms $Au(FSO_3)_3$, while addition of Br_2 extends the synthesis to generate $Au(FSO_3)_4^{-.185}$ Likewise, Pd metal with $BrSO_3F$ or $S_2O_6F_2$ generates $Pd(FSO_3)_2$ and $Pd(FSO_3)_3$, the former polymeric with tridentate FSO_3^{-} , the latter best regarded as $Pd^{II}[Pd^{IV}(FSO_3)_6]$ with unidentate $FSO_3^{-.73}$ Reduction of $Pd(OSO_2F)_6^{2-}$ by Br_2 in liquid SO_2 yields $BrSO_3F$ and square-planar, diamagnetic $Pd(OSO_2F)_4^{2-.186}$

Although they do not bear directly on the title of this subsection, it is noted that some cases of insertion of the Lewis acid SO_3 into M-F bonds to form M-OSO₂F

complexes have appeared. CrO_2F_2 with SO_3 gives $CrO_2(SO_3F)_2$,¹⁸⁷ while the like reaction with UF₆ in the gas phase or in CFCl₃ solution yields UF₂(SO₃F)₃,¹⁸⁸ like reactions with XeF₆ and CrF₅ are known.^{189,190}

4. Ligation of Metal Salts

Adducts of usually labile metal salts of RSO₃⁻ formed by reaction with potentially coordinating molecules have produced complexes that in the solid state appear to have RSO₃⁻ coordinated. While these compounds usually have no significant existence in aqueous solution, evidence for covalency of RSO₃⁻ in the solid state or aprotic solvents is in some cases compelling. M-(pyridine)₄(FSO₃)₂ (M = Ni, Cu, Zn) has been prepared, where FSO₃⁻ may act as a unidentate ligand.⁷⁰ Various similar ML₄(CF₃SO₃)₂ complexes (L = pyridine or substituted pyridines; M = Ni, Co) are known,⁷² with high-spin six-coordination indicated. From electronic spectroscopy of such compounds, CF₃SO₃⁻ and FSO₃⁻ appear to be better coordinators than ClO₄⁻ and BF₄⁻, but worse than ReO₄⁻, Cl⁻, and Br⁻.

 $VO(FSO_3)_2^{2-}$ forms adducts with pyridine and quinoline that are polymeric, while $TiCl_2(FSO_3)_2$ forms 1:1 adducts with pyridine, quinoline, and dimethyl sulfoxide, with FSO_3^- retained as a monodentate ligand.¹⁹² Reaction of $TiCl_2(FSO_3)_2$ with acetylacetone produces apparently $Ti(acac)_2(FSO_3)_2$,¹⁹² although retention of FSO_3^- rather than Cl^- is a little surprising.

Axial trifluoromethanesulfonate coordination is implied by optical and ESR studies of $CuL_2(CF_3SO_3)_2$ (L = 2,2',2"-tripyridylamine), prepared by reaction of $Cu(CF_3SO_2)_2$ and L in methanol or by recrystallization of $[CuL(NCCH_3)_2]$ (CF₃SO₃)₂ from acetone ether mixture.⁶⁹ The reaction of $[Cu(OSO_2CF_3)]_2$ ·C₆H₆ with L in benzene has been studied in some detail, and in the presence of molecular oxygen a cubane-like tetramer with CF₃SO₃⁻ spanning two vertices of the cluster forms (14); Cu-OSO₂CF₃ distances are somewhat longer than

Cu–OH but are fully consistent with covalent bonding.⁸⁵ Fluorosulfate ion adds readily to Au(FSO₃)₃ to form the readily isolable Au(OSO₂F)₄⁻ ion.¹⁹³ A square-planar Au(III) environment with unidentate CF₃SO₃⁻ is consistent with the observed diamagnetism, and indeed the X-ray crystal structure of the analogue K[Au(NO₃)₄]¹⁹⁴ supports this assignment.

Metal(I) compounds Cu(CF₃SO₃) and Ag(CF₃SO₃) add phosphine ligands in aprotic solvent. Both Ag-(PR'₃)_n(CF₃SO₃), n = 1-3, and Ag(PR'₃)₄(CF₃SO₃) are known,¹⁹⁵ as are Cu(PR'₃)_n(CF₃SO₃), n = 1-4.^{196,197} The n = 1 compounds are dimeric with bridging CF₃SO₃⁻, while the n = 4 compounds are ionic. The intermediate species ionize in solution, but may contain bound $CF_3SO_3^-$ in the solid state. An acetonitrile complex of copper(I) trifluoromethanesulfonate has also been reported.¹⁹⁸ Adducts of Fe(FSO₃)₂ with various N-donor molecules appear to contain covalent FSO₃⁻ in the solid state in several examples.⁶⁸ Mercury(II) trifluoromethanesulfonate forms a phosphido-bridged pentamer $[Hg_5(\mu-Cy_2P)_5(CF_3SO_3)_2]$ with dicyclohexylphosphine,¹⁹⁹ while the Hg(CN)(OSO₂CF₃) complex exists in equilibrium with Hg(CN)₂ and Hg(CF₃SO₃)₂ in dimethyl sulfoxide.²⁰⁰ While many of the compounds described in this section do not have the robustness of RSO₃⁻ can coordinate effectively to labile transition-metal ions.

III. Kinetics of Substitution of Coordinated RSO₃⁻

As a consequence of the inductive effects of CF_3 -, F-, and -SO₂- groups, (trifluoromethyl)sulfonyl and fluorosulfonyl groups are among the strongest electronwithdrawing groups known.¹⁵ The trifluoromethanesulfonate anion in particular has found favor as an excellent leaving group in nucleophilic substitution reactions in organic chemistry.¹⁵⁻¹⁹ It has been established that RSO_3^- is a better leaving group than I⁻ from CH₃X.²⁰¹ Further, CH₃OSO₂F reacts more rapidly than CH_3I in oxidative addition to an iridium(I) complex to generate a complex with coordinated FSO₃^{-.128} The leaving group capacity of RSO₃⁻ in organic chemistry has been observed to extend to metal-bound RSO₃, where ready substitution of RSO_3^- by a range of better nucleophiles has been observed qualitatively. With organometallic compounds, this has been established by several independent studies^{61,112,127,129,133,135} and is now well established in coordination chemistry.^{33,161} It is the relative lability of RSO_3^- over other anions that promises a synthetic role for complexes with bound RSO_3^{-} , and recently there have been reported several studies where this lability has been quantified, particularly with $CF_3SO_3^{-}$.

The first measurement of a substitution rate for coordination RSO₃⁻ was reported by Taube and Scott in 1971,¹⁵⁴ who found that trifluoromethanesulfonate bound to chromium(III) in $Cr(OH_2)_5(OSO_2CF_3)^{2+}$ aquated tenfold slower than OClO₃⁻ but tenfold faster than ONO_2^- on the same metal ion. More recently, the rate of acid aquation of both CF₃SO₃⁻ and FSO₃⁻ from their respective pentaamminecobalt(III) complexes have been reported.^{25,26,49} The relative labilities of these ligands can be directly compared with a wide range of other leaving groups (Table IV), where it can be readily seen that the two anions are of similar lability and only tenfold less labile than coordinated perchlorate. This obvious lability of RSO₃⁻ compared with other common anions is maintained when coordination is to other metal ions such as Cr(III), Rh(III), Ru(III), and even Ir(III)¹⁶¹ and Os(III)²⁰² (Table IV). In fact, the relative lability of $CF_3SO_3^-$ increases down the cobalt triad for the pentammines when compared with Cl⁻ analogues, at least for aquation reactions: the k_{obsd} ratio for Co: Rh:Ir with trifluoromethanesulfonato is 103:72:1, but is 17 000:600:1 for chloro complexes.¹⁶¹ The trifluoromethanesulfonate ion aquates some 10^4 to 10^6 times faster than the chloride ion from these metals. Lability

TABLE IV. Aquation Rates for Pentaamminecobalt(III) Complexes with Various Ligands and for (Trifluoromethanesulfonato)pentaamminemetal Complexes in Acid at 25 °C

$Co(NH_3)_5L^{n+}$ complexes			$M(NH_3)_5(OSO_2CF_3)^{n+}$ complexes		
L	$k_{\rm obsd}, {\rm s}^{-1}$	ref	M	$k_{\rm obsd}, {\rm s}^{-1}$	ref
CF ₃ SO ₃ -	2.68×10^{-2}	49	Co(III)	2.68×10^{-2}	49
FSO ₃ -	2.2×10^{-2}	26	Rh(III)	1.87×10^{-2}	161
ClO ₄	1.0×10^{-1}	162	Ir(III)	2.61×10^{-4}	161
CH ₃ SO ₃ -	2.0×10^{-4}	25	Cr(III)	1.24×10^{-2}	161
NO ₃ -	2.7×10^{-5}	а	Ru(III)	9.3×10^{-2}	161
Cl-	1.7×10^{-6}	Ь	Os(III)	$1.8 imes 10^{-3}$	202
-OOCCH ₃	2.7×10^{-8}	с	Pt(IV)	>10 ⁻⁵	161
$OC(CH_3)_2$	4.1×10^{-2}	49			
$OP(OCH_3)_3$	2.5×10^{-4}	d			
$OS(CH_3)_2$	2.2×10^{-5}	е			
OHCH ₃	5.9×10^{-5}	49			
OH_2	5.9×10^{-6}	f			
NH_3	5.8×10^{-12}	g			

^aBrønsted, J. N. Z. Phys. Chem. **1926**, 122, 383. ^bAdamson, A. W.; Basolo, F. Acta Chem. Scand. **1955**, 9, 1261. ^cMonacelli, F.; Basolo, F.; Pearson, R. G. J. Inorg. Nucl. Chem. **1962**, 24, 1241. ^dSchmidt, W.; Taube, H. Inorg. Chem. **1963**, 2, 698. ^eReynolds, W. F.; Birus, M.; Asperger, S. J. Chem. Soc., Dalton Trans. **1974**, 716. ^fHunt, H. R.; Taube, H. J. Am. Chem. Soc. **1958**, 80, 2642. ^gNewton, A. M.; Swaddle, T. W. Can. J. Chem. **1974**, 52, 2751.

TABLE V. Comparison of Aquation and Base Hydrolysis Rate Constants of $M(NH_2R)_5 X^{2+}$ (X = Cl⁻, CF₃SO₃⁻) Compounds at 25 °C^{161,203}

М	R	Х	$k_{\rm aq},{ m s}^{-1}$	k _{OH} , M ⁻¹ s ⁻¹
Co	Н	CF ₃ SO ₃ -	2.4×10^{-2}	1.0×10^{4}
		Cl-	1.7×10^{-6}	0.8
		$(k_{\rm tr}/k_{\rm CI})^a$	(1.4×10^4)	(1.25×10^4)
Co	CH_3	CF ₃ SO ₃ -	8.7×10^{-2}	2.1×10^{7}
		Cl-	3.7×10^{-5}	3.8×10^{4}
		$(k_{\rm tr}/k_{\rm Cl})$	(2.4×10^3)	(5.5×10^2)
Rh	Н	CF_3SO_3	1.91×10^{-2}	46
		Cl-	3.8×10^{-8}	1.1×10^{-4}
		$(k_{\rm tr}/k_{\rm Cl})$	(5.0×10^5)	(4.2×10^5)
\mathbf{Rh}	CH_3	$CF_3SO_3^-$	3.47×10^{-2}	$7.0 imes 10^{3}$
		Cl-	2.6×10^{-8}	4.4×10^{-3}
		$(k_{\rm tr}/k_{\rm CI})$	(1.3×10^{6})	(1.6×10^6)
\mathbf{Cr}	Н	$CF_3SO_3^-$	1.09×10^{-2}	2.5
		Cl	8.7×10^{-6}	1.9×10^{-3}
		$(k_{\rm tr}/k_{\rm CI})$	(1.25×10^3)	(1.3×10^3)
\mathbf{Cr}	CH_3	CF_3SO_3	6.43×10^{-4}	2.0×10^{3}
		Cl-	2.6×10^{-7}	4.3×10^{-1}
		$(k_{\rm tr}/k_{\rm CI})$	(2.5×10^3)	(4.6×10^3)
Ir	Н	$CF_3SO_3^-$	2.30×10^{-4}	1.36×10^{-2}
		Cl-	1.1×10^{-9}	4.8×10^{-8}
		$(k_{\rm tr}/k_{\rm CI})$	(2.1×10^5)	(2.8×10^5)

^a Value in parentheses represents the rate enhancement for $CF_3SO_3^-$ over CI^- as leaving group.

is maintained in base-catalyzed hydrolysis of the pentaammines²⁰³ and on the pentakis(methylamine) analogues,^{161,203} as can be seen readily from the data collected in Table V. For organometallics, explicit rate constants have not been reported, but half-lives for reactions with nucleophiles are known to be short.^{61,112,127,129,133,135}

Bond cleavage in $Co(NH_3)_5(OSO_2CF_3)^{2+}$ has been shown to occur exclusively (>99%) by Co–O rather than O–S cleavage by ¹⁸O tracer studies of acid aquation.²⁵ However, solvolysis of $Co(NH_3)_5(OSO_2F)^{2+}$ occurs with concurrent S–F cleavage, since $Co(NH_3)_5F^{2+}$ can be detected as a significant product.²⁶ The amount of fluoropentammine formed is acid-dependent in water, with 26% detected in 0.01 M HClO₄ but <0.4% detected in 0.01 M NaOH. This S–F cleavage is not re-

TABLE VI. Rate Constants for Solvolysis of $M(NH_3)_5(OSO_2CF_3)^{2+}$ Complexes at 25 °C in Various Polar Solvents^{206}

			_	
solvent	$k(Co), s^{-1}$	$k(Rh), s^{-1}$	$k(Ir), s^{-1}$	Co:Rh:Ir
water methanol	2.68×10^{-2} 9.5×10^{-4}	1.89×10^{-2} 5.91×10^{-4}	2.61×10^{-4} 1.41×10^{-5}	103:72:1 67:42:1
dimethyl sulfoxide	1.35×10^{-2}	3.11×10^{-3}	1.14×10^{-4}	118:27:1
dimethyl- formamide	1.56×10^{-2}	6.78×10^{-3}	1.83×10^{-4}	85:37:1
acetonitrile pyridine	4.63×10^{-4} 1.16×10^{-2}	1.65×10^{-4} 2.06×10^{-3}	7.5×10^{-6} 9.95×10^{-5}	62:22:1 116:21:1

stricted to aqueous solution, since 44% $Co(NH_3)_5F^{2+}$ was found upon reaction in dimethyl sulfoxide. It was suggested that $O \rightarrow F$ isomerization of the ligand occurs, with the F-bonded metal complex acting as a leaving group in subsequent F–S bond cleavage.²⁶ The possible complication of F–S bond cleavage in reactions of bound fluorosulfate, observed for at least cobalt(III)bound complexes, indicates that the robust coordinated trifluoromethanesulfonate will have greater general applicability in synthesis and probably accounts for recent emphasis being placed on $CF_3SO_3^-$ as a labile and replaceable ligand.

Apart from the several studies of hydrolysis reactions of trifluoromethanesulfonato pentaammine complexes in aqueous acid or base, ^{25,49,161,203–205} where the properties of $CF_3SO_3^-$ as a labile leaving group have been carefully investigated, it is notable that other solvolysis reactions have been studied. Rate constants for solvolysis of $M(NH_3)_5(OSO_2CF_3)^{2+}$ (M = Co, Rh, Ir) in a range of polar and potentially coordinating solvents have been determined.²⁰⁶ For all solvents studied with each metal (Table VI) a rate ratio for Co:Rh:Ir of approximately 90:40:1 is preserved, with the progressively slower rate constant from cobalt to iridium arising in the activation entropy term for all solvents except water, suggesting a mechanistic uniqueness for this solvent probably tied to its unique hydrogen-bonding capacity. While the relationships between rate constant and solvent properties have been probed,²⁰⁶ it is the demonstrated ability of alcohols, sulfoxides, amides, nitriles, phosphate esters, and amines to replace CF₃SO₃⁻ readily under mild conditions that is of importance from a synthetic viewpoint.

Complexes containing two bound $CF_3SO_3^-$ lose both rapidly and sequentially in acid hydrolysis. Hydrolysis of *cis*-Co(en)₂(OSO₂CF₃)₂⁺, for example, proceeds via

$$cis-Co(en)_{2}(OSO_{2}CF_{3})_{2}^{+} \xrightarrow{k_{1}} cis-Co(en)_{2}(OSO_{2}CF_{3})(OH_{2})^{2+} \xrightarrow{k_{2}} cis-Co(en)_{2}(OH_{2})_{2}^{3+} (19)$$

with $k_1 = 2.2 \times 10^{-2} \text{ s}^{-1}$ and $k_2 = 8.6 \times 10^{-3} \text{ s}^{-1.161}$ This behavior differs from that generally observed for Co-(en)₂X₂ⁿ⁺ complexes, since $k_2 \ll k_1$ usually; for example, for X = Cl⁻, $k_1/k_2 = 150$,²⁰⁷ compared with $k_1/k_2 = 2.6$ for X = CF₃SO₃⁻. The rate constants for *cis*-Co(en)₂-(OSO₂CF₃)₂⁺ correspond closely to the purely statistical expectation of $k_1 = 2k_2$; this relationship may also hold for Co(tren)(OSO₂CF₃)₂^{+ 165,208} and is observed for other *cis*-M(en)₂(OSO₂CF₃)₂⁺ complexes (M = Rh, Ir, Cr). This behavior is consistent with bound trifluoromethanesulfonate displaying relatively weak covalent bonding, with the strength of the second bound CF₃S- O_3^- little affected by loss of the first from the coordination sphere. The sequential loss of trifluoromethanesulfonate implied strongly on cobalt(III) has been followed for iridium(III), where hydrolysis is substantially slower, by NMR spectroscopy.^{161,209} Aquation reactions of the *trans*-M(en)₂Cl(OSO₂CF₃)⁺ complexes (M = Rh, Ir) show only one fast aquation step, which from NMR evidence occurs with stereoretention; both rhodium and iridium complexes generally aquate with stereoretention, contrasting with cobalt. Loss of the three CF₃SO₃⁻ ligands from Co(dien)-(OSO₂CF₃)₃ and Co(tacn)(OSO₂CF₃)₃ is also rapid,^{49,209} so lability is a general phenomenon.

IV. Synthetic Applications of Bound RSO₃⁻

Apart from simple adduct-formation reactions mentioned earlier, reactions of fluorosulfate and trifluoromethanesulfonate compounds of main-group elements (except carbon) employing the lability of these ions are few. Even in those adduct reactions, such as addition of pyridine to $Bi(OSO_2F)_3$,¹⁰⁷ displacement of RSO_3^- is not necessarily a consequence of the reaction. Nevertheless, the synthetic usefulness of certain compounds, such as reactions involving cis-SF₄(OSO₂F)₂,¹⁰⁰ has gained recognition. Perhaps the thermodynamic instability or absence of any finite existence in many common solvents vitiates synthetic utility of main-group compounds in many cases. Comparatively, organometallic and coordination compounds containing coordinated trifluoromethanesulfonate or fluorosulfate are robust and often readily isolable as pure solids. Since the relative lability of RSO_3^- compared to other common anions is maintained throughout the d-block metal ions, metal compounds with coordinated RSO_3^- have a general utility, providing a site (or sites) for facile substitution processes. Already these inorganic synthons have had considerable application, and new routes to compounds previously inaccessible or available only via complex and low-yielding paths have been reported and will be discussed subsequently. Of the two anions, trifluoromethanesulfonate is attracting the lion's share of attention, since it lacks the potential reactivity of fluorosulfate discussed earlier and represents a genuinely indifferent anion.

A. Organometallic Compounds

Reactivity of coordinated trifluoromethanesulfonate with first-row d-block compounds has been demonstrated on only a few occasions, yet these examples, appropriately enough, serve to illustrate some of the potential for bound $CF_3SO_3^-$ in synthesis. $(\pi$ - $C_5H_5_2Ti(OSO_2CF_3)_2$ is sufficiently reactive to allow substitution of trifluoromethanesulfonate by nitrate upon reaction with $(H_5C_2)_3NH^+NO_3^-$ in an aprotic solvent, forming $(\pi$ -C₅H₅)₂Ti $(NO_3)_2$.²¹⁰ The manganese(I) compound $Mn(CO)_5(OSO_2CF_3)$ contains a particularly labile trifluoromethanesulfonate, since reaction with carbon monoxide to form a hexacarbonyl is very fast;¹¹⁴ in fact, it appears that Mn(I)-OSO₂CF₃ association is weaker than that of Mn(I)-OClO₃ in this case, with acetonitrile also being preferred as a ligand. Formal displacement of η^3 -allyl on manganese(I) by CF_3SO_3H in ether forms 10; this intermediate is readily substituted, since in the presence of diene the new

complex $[Mn(diene)(CO)_2(PR'_3)_2](CF_3SO_3)$ can be prepared,¹¹³ thus permitting facile exchange of unsaturated π -bonded organic molecules.

The reactivity of $CF_3SO_3^-$ on first-row organometallics extends to the second- and third-row metals. In view of the large number of examples of iridium(III) compounds with bound $CF_3SO_3^-$ and FSO_3^- , it is not surprising that subsequent reactions of these complexes dominate this section. The intermediates IrCl(CO)- $(PR'_3)_2(CH_3)(OSO_2R)$ (R = F, CH₃) are readily substituted by other ions or nucleophiles, offering a convenient route to a series of iridium(III) complexes.¹²⁷ All of the ligands F⁻, Cl⁻, Br⁻, I⁻, NCS⁻, NCO⁻, N₃⁻, NO₂⁻, NO₃⁻, CH₃COO⁻, p-CH₃C₆H₄SO₃⁻, and (NC)C- $(CN)_2$ have been introduced; further, reaction with $Pt(CN)_4^{2-}$ produces a dimer with a bridging cyanide. Both the low nucleophilicity of $CF_3SO_3^-$ and FSO_3^- and the versatility of the technique are illustrated in this The similar compound IrCl(OSO₂R)example. $(CH_3)(N_2)(PR'_3)_2$ (R = F, CF₃) reacts with the anions Cl⁻, Br⁻, I⁻, NCO⁻, CH₃COO⁻, NO₃⁻, and NO₂⁻ in methanol at room temperature to form the five-coordinate iridium(III) compounds $IrCl(X)(CH_3)(PR'_3)_2$, where both RSO_3^- and N_2 have been displaced.¹²⁹ These coordinatively unsaturated products readily form 1:1 adducts with carbon monoxide. The IrCl(CO)- $(PR'_3)(H)(OSO_2R)$ compounds $(R = F, CF_3)$ show ready displacement of RSO₃⁻ by ions like Cl⁻, Br⁻, SCN⁻, and SeCN⁻.^{135,137} A more extensive study of IrCl(H)- $(OSO_2CF_3)(CO)(PR'_3)_2$ showed that reaction with weak neutral σ - and π -donor ligands like NCCH₃, P(C₆H₅)₃, OH_2 , $(CH_3)_2CO$, tetrahydrofuran, and C_2H_4 occurs with replacement of $CF_3SO_3^-$ in each case.^{136,138}

On second-row rhodium, the one study by NMR spectroscopy in CH_2Cl_2 at low temperature showed that the intermediate mer-RhCl₂[$P(CH_3)_2C_6H_5$]₃(OSO₂F) reacts readily at -60 °C with nitromethane, displacing FSO_3^- , while with extra $P(CH_3)_2C_6H_5$, the ionic complex ${\rm RhCl_2[P(CH_3)_2C_6H_5]_4}({\rm FSO_3})$ forms.⁶¹ The facility of these substitutions at low temperature is notable. With third-row metals, reactions are also facile. Reaction of $Pt(OSO_2F)(H_5C_6C=CHC_6H_5)(PR'_3)_2$ with tetraethylammonium chloride in chloroform proceeds quantitatively to the chloro analogue.¹³³ Similarly, $Pt(PR'_3)_2Cl_2$ can be isolated from the reaction of lithium chloride in acetone with the trifluoromethanesulfonato precursor.¹¹⁵ While it is not a simple substitution reaction, it is notable that spontaneous reductive elimination from $(CH_3)_2Au(PR'_3)(OSO_2CF_3)$ to form C_2H_6 and Au- $(PR'_3)(OSO_2CF_3)$ is about 10⁵-fold more facile than with the nitrato analogue and more reactive again than for CF₃COO⁻, Cl⁻, and CH₃COO⁻ analogues.¹¹² In the same paper, substitution of the gold(III) complex (CH₃)₂Au- $(PR'_3)(OSO_2CF_3)$ by triphenylphosphine to form [Au- $(CH_3)_2(PR'_3)_2](CF_3SO_3)$ is reported.

With d⁶ ruthenium(II) carbonyl diimines, Ru(CO)₂-(LL)(OSO₂CF₃)₂ (LL = phen, bpy), substitution by acetonitrile to form Ru(CO)₂(LL)(NCCH₃)₂^{116,117} or by further phen or bpy to form [Ru(CO)₂(LL)₂]-(CF₃SO₃)₂^{116,117} where mixed bidentate LL ligands may be coordinated have been reported. These types of substitutions have close parallels in reactions of coordination compounds, discussed in the next section. While quite a range of organometallic compounds have been synthesized from bound RSO₃⁻ intermediates, there is clearly opportunity for expansion now that the general lability of RSO_3^- in these systems has been established.

B. Coordination Complexes

It is in the area of coordination chemistry that extensive applications of coordinated trifluoromethanesulfonato precursors in synthesis have been made in only the last 5 years. Clearly, it is here that the versatility of these synthons has been best illustrated, so it is fitting that the last descriptive section of this review be reserved for their discussion. Their versatility is based on several now well-established bases:

(a) The trifluoromethanesulfonato precursors can be readily prepared as stable and pure solids.

(b) Relative lability of bound trifluoromethanesulfonate is maintained throughout the d-block metal ions.

(c) The precursor complexes and trifluoromethanesulfonate salts of the products exhibit excellent solubility in a wide range of polar solvents, particularly in the poorly coordinating solvents sulfolane and acetone which are commonly employed when reaction with a solid potential ligand is envisaged.

1. Coordination of Nucleophilic Solvents

Direct dissolution of trifluoromethanesulfonato complexes in a wide range of solvents has been applied successfully to synthesis of a wide range of solventbound complexes. Essentially all complexes dissolve with complete aquation in water, but the range of applicable solvents is far more extensive. The trifluoromethanesulfonato pentaammine complexes of cobalt-(III), rhodium(III), iridium(III), and chromium(III) are solvated by alcohols, sulfoxides, amides, nitriles, phosphate esters, and acids;^{49,161,206,211,212} the products are isolable as solids simply by solvent evaporation or precipitation with diethyl ether. A strong case has even been made for coordination of acetone, from freezedrying of an acetone solution of (trifluoromethanesulfonato)pentaamminecobalt(III), although the acetone ligand is labile, having a half-life of ~ 15 s in aqueous acid at 25 °C.49 Sulfolane is an even weaker ligand, on cobalt(III) at least, and no strong case can be made for its coordination,49 although coordination may occur with heavier d-block ions. The pentakis(methylamine)cobalt(III) complexed solvent analogues can be prepared simply in a like manner.²⁰⁴ Further, solvent complexes from $Co(en)_2(OSO_2CF_3)_2^{+149,161}$ and $Co(tren)_2(OSO_2CF_3)_2^{+165,208}$ have been prepared and characterized. Even with $[Mo_2(OH_2)_4(OSO_2CF_3)_2]^{2+}$, reaction in acetonitrile eventually leads to $[Mo_2(NCCH_3)_8]^{4+.179}$ Isotopically labeled solvents, such as ¹⁷OH₂, may be introduced into the coordination sphere without isotopic dilution²¹³ by $CF_3SO_3^-$ substitution.

Steric influences can play a part in solvolysis reactions of trifluoromethanesulfonato complexes. For example, $Co(NH_2R)_5(OSO_2CF_3)^{2+}$ ions form alcohol complexes with methanol, ethanol, and 2-propanol more readily with $R = CH_3$ than occurs with R = H; the only evidence for coordination of 2-methyl-2-propanol is for the R = H compound and comes from NMR experiments.^{49,209} The subsequent loss of OHR ligands by aquation occurs with rate constant ratios of 1:10:13:60 for OH₂:OHCH₃:OHCH₂CH₃:OHCH(CH₃)₂, perhaps reflecting increasing steric influences.⁴⁹ Solubility of the precursor trifluoromethanesulfonato complex is also relevant, although potentially coordinating nucleophilic solvents are generally sufficiently polar to dissolve the reactant.

2. Coordination of Neutral Solids

Not all potential ligands are liquids at or near room temperature. For example, urea and cyanamide are potentially good ligands, but are solids. Coordination of these ligands previously required vigorous conditions and involved tedious fractional recrystallizations to obtain products in relatively low yield.²¹⁴ In situ generation of a labile leaving group, such as occurs from nitrosation of azidopentaammine complex in the presence of the potential ligand in a poorly coordinating solvent.²¹⁵ is not feasible since the potential ligands are themselves susceptible to nitrosation. However, simple and high-yielding syntheses of complexes of urea and cyanamide arise merely from reaction of the ligands in sulfolane or acetone with a trifluoromethanesulfonato complex.³³ This type of reaction has been applied to pentaamminecobalt(III),49 pentaamminerhodium(III),216 pentakis(methylamine)cobalt(III),²⁰⁴ and pentaamminechromium(III)^{211,212} to coordinate urea and like molecules. In the Cr(III) case, where vigorous reaction conditions can lead to ammine loss, this synthetic method has allowed coordination of urea to pentaamminechromium(III) for the first time. An advantage of the synthetic technique is that it permits complexation and even recrystallization in the absence of water, should the product prove sensitive to water attack.

Reactions in other solvents have also been successfully applied. With cis-[Ir(bpy)₂(OSO₂CF₃)₂]⁺ coordination of a third bipyridyl ligand occurs in high yield when reaction is performed in ethylene glycol.¹⁶⁹ With triphenylphosphine in the same solvent cis-[Ir(bpy)₂- $(PR'_{3})H]^{2+}$ is formed, while two hydride ligands are coordinated in ethanol-water upon addition of borohvdride.¹⁶⁹ The neutral complex $Ag(PR'_3)_3(OSO_2CF_3)$ in methanol with additional triphenylphosphine forms $Ag(PR'_3)_4$ +CF₃SO₃-.¹⁹⁵ In a potentially coordinating solvent such as methanol, of course, final coordination may proceed via the solvent complex; this is most likely the case in acetone also, but that solvent is readily displaced. Reactions of trifluoromethanesulfonates of low solubility in water, as for $Co(tacn)(OSO_2CF_3)_3$ with triphosphate forming $Co(tacn)(P_3O_{10}H_2)$,¹⁶⁸ proceed via aqua complexes. In certain cases, essentially heterogeneous reactions may occur, as is reportedly the case in the formation of $Pt(PR'_3)_2(NH_2CH_2COO)$ from reaction of $Pt(PR'_3)_2Cl(OSO_2CF_3)$ with glycine,¹⁵⁵ although even strictly limited solubility in a chosen solvent may be sufficient to permit the actual reaction to occur in the solution phase.

3. Dimer Formation

The lability of coordinated $CF_3SO_3^-$ has been put to good use in developing facile routes to ligand-bridged transition-metal dimers. A wide range of simple bridging ligands with the capacity to coordinate to two metal ions simultaneously are known, and routes to a substantial number of complexes of these already exist in the inorganic chemical literature. However, it is only recently that high-yielding and mild routes have been developed based on substitution of trifluoromethanesulfonate.

One of the first reports involved synthesis of binuclear complexes with a bridging imidazole anion, where a (trifluoromethanesulfonato)(tetraphenylporphinato)iron(III) monomer was linked to copper and zinc amines.²¹⁷ This type of linkage has recently been explored for the simple complexes $[M(NH_3)_5(imidH)]^{3+}$ with $[M'(NH_3)_5(OSO_2CF_3)]^{2+}$ (M = Co, Rh, Ir) reacting in sulfolane in the presence of a noncoordinating base, whence $[(NH_3)_5M-imid-M'(NH_3)_5]^{5+}$ can be formed.²¹⁸ This last example illustrates a quite general reaction in sulfolane or acetone

$$[M(NH_3)_5(LL)]^{n+} + [M'(NH_3)_5(OSO_2CF_3)]^{2+} \xrightarrow[solvent]{}$$

$$[(NH_2)_5M-LL-M'(NH_2)_5]^{(n+3)+} (20)$$

which may require addition of some noncoordinating base (e.g., triethylamine) depending on the form of the pendant arm of the potentially bridging ligand LL. Of course, variations on this theme are immediately obvious. One successfully applied involves reaction with the macrobicycle (1-amino-8-methyl-3,6,10,13,16,19hexaazabicyclo[6.6.6]icosane)cobalt(III):²¹⁹

An area where this type of reaction is receiving particular attention is that of ruthenium and osmium Reaction of 2 mol of $[Ru(NH_3)_5$ chemistry. (OSO_2CF_3)]⁺, generated by the in situ zinc reduction of the ruthenium(III) complex in acetone, with 1 mol of 4,4'-bipyridyl followed by air oxidation and precipitation with iodide yields the Ru(III)/Ru(II) dimer with bridging 4,4'-bipyridyl.¹⁶³ This high-yielding reaction can be applied to a range of other potentially bridging ligands; even the dication [(4,4'-bpy)+CH₂]₂CH₂ binds to ruthenium.²²⁰ Bis(pentaammineruthenium) bridged by 1,4-dicyanobicyclo[2.2.2]octane and a mixed Ru-(III)/Co(III) dimer with the same bridging ligand have also been reported recently, prepared from the Ru- $(NH_3)_5(OSO_2CF_3)^{2+}$ precursor.¹⁷² With osmium, the reactions investigated to form bridged dimers from trifluoromethanesulfonato precursors generally parallel those of ruthenium.¹⁷³ Apart from simple amine complexes, study of trifluoromethanesulfonato complexes of ruthenium diimines is proceeding, with a view to forming dimers.²²¹ These types of complexes may be of photochemical and photophysical interest relevant to aspects of solar energy conversion research. More generally, constraining two metal ions to close proximity by linking them coordinatively is of interest for studying electron-transfer processes and for mimicing certain active sites of metalloproteins with more than one metal ion present. In principle, trimers of more extended polymers may be accessible, for example

$$2M(NH_3)_5(LL)^{n+} + M'(en)_2(OSO_2CF_3)_2^+ \rightarrow ((NH_3)_5M-LL)_2M'(en)_2^{(2n+3)+}$$
(22)

 a (A) Coordinating solvent; M = Co^{III}, Rh^{III}, Ir^{III}, Cr^{III} and R = H or CH₃. (B) Acetone or sulfolane, coordinating ligand L, neutral or ionic; $M = CO^{III}$, Rh^{III} , Ir^{III} , Cr^{III} , Ru^{III} , Os^{III} and R = H or CH₃. (C) $M = Ru^{III}$, Os^{III} and LL = pyrazine, 4,4-'bpy; (i) acetone, Zn-(Hg),LL (ii) oxidation. (D) $M = Co^{III}$, Rh^{III} , Ir^{III} , Ru^{III} ; various LL-M'L₅ added in sulfolane or acetone.

although no serious investigations of these seem to have been addressed.

The types of reactions in which trifluoromethanesulfonato pentaamine complexes have been employed to date have been collected in Scheme II. This scheme applies to inert octahedral complexes; like reactions occur with other amine complexes, and together these represented the vast majority of examples. Clearly, there are opportunities for extension beyond these boundaries.

V. Conclusion

There now exists extensive and irrefutable evidence for covalent bonding of both trifluoromethanesulfonate and fluorosulfate anions to elements throughout the periodic table, particularly to main-group and transition-metal elements. Of the possible modes of binding available to RSO_3^- , the majority have been defined or inferred in the solid state. In solution, it is as a unidentate that RSO_3^- is commonly found, and this is not inconsistent with its behavior as a ligand of relatively low nucleophilicity. The lability of RSO_3^- , particularly CF₃SO₃⁻, has been clearly defined from reactivity and kinetic behavior; relative lability even extends to coordination to metal ions regarded as very inert. Despite the ease of replacement of RSO_3 , facile syntheses of compounds with coordinated RSO₃⁻ have been developed, based largely but not entirely on reactions in the readily available anhydrous acids.

At least for coordination complexes, the ability to prepare, in high yield, labile trifluoromethanesulfonato complexes that are commonly air-stable analytically pure solids identifies these complexes as potentially valuable inorganic synthons. A preference for M-OSO₂CF₃ rather than M-OSO₂F has developed, principally as a consequence of uncertainties regarding the inertness of the FSO_3^- ion discussed above. It is as synthetic intermediates that metal complexes of coordinated $CF_3SO_3^-$ have shown exceptional potential, and one presumes that the activity in this area which has developed in only the last five years will continue to expand. In organometallic chemistry, oxidative addition of RSO_3H or RSO_3CH_3 to d⁸ metal compounds demonstrably offers a simple route to d⁶ octahedral compounds with a labile substitution site, and this is one readily identifiable area where further research could be contemplated. The extensive literature that has developed in the field of covalent fluorosulfate and trifluoromethanesulfonate in largely the last two decades augurs well for expansion in the future. It is hoped

that this first review devoted specifically to coordinated trifluoromethanesulfonate and fluorosulfate can serve as both a reference source and a prompt for future synthesis and application of such compounds.

Acknowledgments. The collaboration with other researchers in producing my own contribution in this field deserves a special mention. Their names appear in various citations in the references. Without this combined scientific assault our results would have been much diminished. In particular, recognition should go to Professor A. M. Sargeson, Australian National University, for his participation and leadership in aspects of this research.

References

- (1) Thorpe, T. E.; Kirman, W. J. Chem. Soc. 1892, 921.
- (2)Farbendindustrie, A.-G. Fr. Patent 808 991, 937; Chem. Abstr. 1937, 31, 6833²
- (3)Stephenson, R.; Watson, W. E. U.S. Patent 2430963, 1947; Chem. Abstr. 1947, 42, 2734d.
- Haszeldine, R. N.; Kidd, J. M. J. Chem. Soc. 1954, 4228. Haszeldine, R. N.; Kidd, J. M. J. Chem. Soc. 1956, 173. Brice, T. J.; Trott, P. W. U.S. Patent 2732398, 1956; Chem. (6)
- Abstr. 1956, 50, 13982h. (7)Delaphane, R. G.; Lundgren, J. O. Acta Crystallogr., Sect B:
- Struct. Crystallogr. Cryst. Chem. 1975, 31, 2208. Lundgren, J. O. Acta Crystallogr., Sect B: Struct. Crystallogr. Cryst. Chem. 1978, 34, 2428, 2432. (8)
- Paul, R. C.; Paul, K. K.; Malhotra, K. C. Inorg. Nucl. Chem. (9)
- Lett. 1969, 5, 689. Gramstad, T. Tidsskr. Kjemi, Bergves. Metall. 1959, 19, 62. Engelbrecht, A.; Rode, B. M. Monatsh. Chem. 1972, 103, (10)(11) $13\bar{15}$.
- Atkins, P. J.; Palling, D. J.; Poon, N. L.; Hall, C. D. J. Chem. (12)
- Soc., Perkin Trans. 2 1982, 1107. Fujinaga, T.; Sakamoto, I. Pure Appl. Chem. 1982, 52, 1387. Fabes, L.; Swaddle, T. W. Can. J. Chem. 1975, 53, 3053. (13)
- (14)
- (15)Hendrickson, J. B.; Sternbach, D. D.; Bair, K. W. Acc. Chem. Res. 1977, 10, 306.
- (16) Hansen, R. L. J. Org. Chem. 1965, 30, 4322.
 (17) Streitwieser, A., Jr.; Wilkins, C. L.; Keilman, E. J. Am. Chem. Soc. 1968, 90, 1598.
 (18) MunSu, T.; Sliwinski, W. F.; Schleyer, P. von R. J. Am. Chem. Soc. 1969, 91, 5386.
 (19) Dueber T. E. Stang, P. J. Pfeifer, W. D. Summarille, P.
- (19) Dueber, T. E.; Stang, P. J.; Pfeifer, W. D.; Summerville, R. H.; Imhoff, M. A.; Schleyer, P. von R.; Hummel, K.; Bocher, N. Schleyer, P. von R.; Hummel, K.; Bocher, R. Standard, S. Stand S.; Harding, C. E.; Hanack, M. Angew. Chem., Int. Ed. Engl. 1970, 9, 52
- (20)
- (21)
- Howells, R. D.; McCown, J. D. Chem. Rev. 1977, 77, 69. Stang, P. J. Aldrichimica Acta 1983, 16, 15. Eibeck, R. E. "Kirk-Othmer Encyclopedia of Chemical Technology" 24 ded Coursen M. Felredth D. Edde Wilson (22)Technology, 3rd ed.; Grayson, M.; Eckroth, D., Eds.; Wiley: New York, 1980; Vol. 10, p 812. Woolf, A. A. J. Chem. Soc. 1954, 2840. Traube, W.; Reubke, E. Ber. Dtsch. Chem. Ges. 1921, 54B,
- (23)
- (24)1618
- (25) Buckingham, D. A.; Cresswell, P. J.; Sargeson, A. M.; Jackson, W. G. Inorg. Chem. 1981, 20, 1647.
 (26) Jackson, W. G.; Begbie, C. M. Inorg. Chem. 1981, 20, 1654.
 (27) Maurey, J. R.; Wolff, J. J. Inorg. Nucl. Chem. 1963, 25, 312.
 (28) Lawrey, C. A. Lawr, Chem. 1963, 25, 312.

- (28) Lawrance, G. A. Inorg. Chem. 1982, 21, 3687.
 (29) Massaux, J.; Duyckaerts, G. Anal. Chim. Acta 1974, 73, 416.
 (30) Jansky, M. T.; Yoke, J. T. J. Inorg. Nucl. Chem. 1979, 41,
- 1707.
- (31) Edwards, D. A.; Stiff, M. J.; Woolf, A. A. Inorg. Nucl. Chem. (31) Edwards, D. A.; SUH, W. J.; WOOH, A. A. Horg, Fuel, Chem. Lett. 1967, 3, 427.
 (32) Woolf, A. A. J. Chem. Soc. A 1967, 355.
 (33) Dixon, N. E.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M.; Taube, H. Inorg. Synth. 1985, 24, Chapter 5.
 (34) Haynes, J. S.; Sams, J. R.; Thompson, R. C. Can. J. Chem. Dist. 50, 600

- 1981, 59, 669. (35) Kupferschmidt, W. C.; Jordan, R. B. Inorg. Chem. 1982, 21,
- 2089
- (36) Jackson, W. G.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M. Aust. J. Chem. 1982, 35, 1561.
 (37) Brazier, J. N.; Woolf, A. A. J. Chem. Soc. A 1967, 99.
 (38) Lo, S. T. D.; Swaddle, T. W. Inorg. Chem. 1976, 15, 1881.
 (39) Goubeau, J.; Milne, J. B. Can. J. Chem. 1967, 45, 2321.
 (40) Ourschi A. M. Corter, H. A. Arkhe, F. Core, J. Chem. 1971.

- (40) Qureshi, A. M.; Carter, H. A.; Aubke, F. Can. J. Chem. 1971,
- 49, 35. (41) Birchall, T.; Dean, P. A. W.; Gillespie, R. J. J. Chem. Soc. A 1971, 1777.

- (42) Ruoff, A.; Milne, J. B.; Kaufmann, G.; Leroy, M. J. F. Z. Anorg. Allg. Chem. 1970, 372, 199.
 (43) Robinson, E. A. Can. J. Chem. 1961, 39, 247.
 (44) Miles, M. B.; Doyle, G.; Cooney, R. P.; Tobias, R. S. Spectrochim. Acta, Part A 1969, 25, 1515.
 (45) Bürger, H.; Burczyk, K.; Blaschette, A. Monatsh. Chem. 1970, 101, 102

- 101, 102.
- (46) Batchelor, R. J.; Ruddick, J. N. R.; Sams, J. R.; Aubke, F.

- (46) Batchelor, R. J.; Ruddick, J. N. R.; Sams, J. R.; Aubke, F. Inorg. Chem. 1977, 16, 1414 and references therein.
 (47) Brown, S. D.; Gard, G. L. Inorg. Chem. 1975, 14, 2273.
 (48) Blake, D. M. J. Chem. Soc., Chem. Commun. 1974, 815.
 (49) Dixon, N. E.; Jackson, W. G.; Lawrance, G. A.; Lancaster, M. J.; Sargeson, A. M. Inorg. Chem. 1981, 20, 470.
 (50) Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980.
 (51) Keller, N.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 2118.
- Keller, N.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 2118. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, (51)(52)
- 1694. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 765.
- Desmarteau, D. D.; Eisenberg, M. Inorg. Chem. 1972, 11, (54)2641.
- (55) Brunel, D.; Germain, A.; Commeyras, A. Nouv. J. Chim. 1978, 2.275.
- (56) Commeyras, A.; Olah, G. A. J. Am. Chem. Soc. 1969, 91, 2929.
 (57) Chevrier, P. J.; Brownstein, S. J. Inorg. Nucl. Chem. 1980, 42, 1397. Yeats, P. A.; Aubke, F. J. Fluorine Chem. 1974, 4,
- 243.(58)
- Brownstein, S. Can. J. Chem. 1980, 58, 1407. Brownstein, S.; Bornais, J.; Latremouille, G. Can. J. Chem. (59)1978. 56. 1419.

- 1978, 56, 1419.
 (60) Dev, R.; Cady, G. H. Inorg. Chem. 1972, 11, 1134.
 (61) Eaborn, C.; Farrell, N.; Murphy, J. L.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1976, 58.
 (62) Tan, T. H.; Dalziel, J. R.; Yeats, P. A.; Sams, J. R.; Thompson, R. C.; Aubke, F. Can. J. Chem. 1972, 50, 1843.
 (63) Yeats, P. A.; Poh, B. L.; Ford, B. F. E.; Sams, J. R.; Aubke, F. J. Chem. Soc., Dalton Trans. 1970, 2188.
 (64) Yeats, P. A.; Landa, B.; Sams, J. R.; Aubke, F. Inorg. Chem. 1972, 1452
- 1976, 15, 1452.
- (65) Yeats, P. A.; Sams, J. R.; Aubke, F. Inorg. Chem. 1973, 12, 328
- (66) De Waard, H.; Buhshpan, S.; Schrobilgen, G. J.; Holloway, J. J.; Martin, D. J. Chem. Phys. 1979, 70, 3247. Lee, K. C.; Aubke, F. Can. J. Chem. 1977, 55, 2473. Paul, R. C.; Kumar, R. C.; Verma, R. D. J. Indian Chem. Soc.
- (68)
- (69)
- 1979, 56, 251.
 Dedert, P. L.; Thompson, J. S.; Ibers, J. A.; Marks, T. J. Inorg. Chem. 1982, 21, 969.
 Alleyne, C. S.; Thompson, R. C. Can. J. Chem. 1974, 52, 3218.
 Solomon, R. G.; Kochi, J. K. J. Chem. Soc., Chem. Commun. (71)1972, 559.
- (72) Byington, A. R.; Bull, W. E. Inorg. Chim. Acta 1977, 21, 239.
 (73) Lee, K. C.; Aubke, F. Can. J. Chem. 1979, 57, 2058.
 (74) Lee, K. C.; Aubke, F. J. Fluorine Chem. 1982, 19, 501.
 (75) Churchill, M. R.; Wasserman, H. J.; Turner, H. W.; Schrock, B. L. Am. Chem. Soc. 1929, 104, 1710.

- R. R. J. Am. Chem. Soc. 1982, 104, 1710. (76) Komiya, S.; Huffman, J. C.; Kochi, J. K. Inorg. Chem. 1977,
- 16.2138(77)Paul, R. C.; Kumar, R. C.; Verma, R. D. Indian J. Chem., Sect. A 1978, 16, 695.
- Dalziel, J. R.; Klett, R. D.; Yeats, P. A.; Aubke, F. Can. J. Chem. 1974, 52, 231. Gillespie, R. J.; Schrobilgen, G. J.; Slim, D. R. J. Chem. Soc., Dalton Trans. 1977, 1003. (78)
- (79)
- Humphrey, M. B.; Lamanna, W. M.; Brookhart, M.; Husk, G. R. Inorg. Chem. 1983, 22, 3355. (80)
- (81) Darensbourg, D. J.; Day, C. S.; Fischer, M. B. Inorg. Chem. 1981, 20, 3577
- Anderson, O. P.; Packard, A. B. Inorg. Chem. 1979, 18, 1129. Collins, M. J.; Denes, G.; Gillespie, R. J. J. Chem. Soc., Chem. (83)
- Commun. 1984, 1296. (84) Allen, F. A.; Lerbscher, J.; Trotter, J. J. Chem. Soc. A 1971,
- 2507
- (85) Dedert, P. L.; Sorrell, T.; Marks, T. J.; Ibers, J. A. Inorg. Chem. 1982, 21, 3509.
 (86) Thewalt, U.; Klein, H. P. Z. Kristallogr. 1980, 153, 307.
 (87) Dines, M. B.; Bird, P. H. J. Chem. Soc., Chem. Commun.
- 1**973**, 12.
- (88)Timmermans, P. J. J. A.; Mackor, A.; Spek, A. L.; Kojić-Prodic, B. J. Organomet. Chem. 1984, 276, 287. Roesky, H.; Wiezer, H. Chem. Ber. 1971, 104, 2258.
- Eisenberg, M.; Desmarteau, D. D. Inorg. Nucl. Chem. Lett. (90)1970, 6, 29.
- (91)
- (93)
- Wechsberg, M.; Bulliner, P. A.; Sladky, F. O.; Mews, R.;
 Bartlett, N. Inorg. Chem. 1972, 11, 3063.
 Shack, C. J.; Christe, K. O. J. Fluorine Chem. 1980, 16, 63.
 Fokin, A. V.; Studnev, Yu. N.; Rapkin, A. I.; Potarina, T. M.;
 Kuznetsova, L. D. Izv. Akad. Nauk. SSSR, Ser. Khim. 1980, 2641.
 Johnson, W. M.; Macklin, J. W. Inorg. Chem. 1978, 17, 2020. 2283.

(94) Johnson, W. M.; Cady, G. H. Inorg. Chem. 1973, 12, 2481.
(95) Chung, C.; Cady, G. H. Inorg. Chem. 1972, 11, 2528. Roberts, J. E.; Cady, G. H. J. Am. Chem. Soc. 1959, 81, 4166. Ibid.

Lawrance

- 1960, 82, 352. (96) Johri, K. M.; Katsuhara, Y.; Desmarteau, D. D. J. Fluorine Chem. 1982, 19, 227.
- (97) Wilson, W. W.; Aubke, F. Inorg. Chem. 1974, 13, 326
- (98) Dudley, F. B.; Cady, G. H. J. Am. Chem. Soc. 1963, 85, 3375.
 (99) Reichert, W. L.; Cady, G. H. Inorg. Chem. 1973, 12, 769. (100) Kitazume, T.; Shreeve, J. M. J. Am. Chem. Soc. 1978, 100,
- 492.
- (101) Gillespie, R. J. Acc. Chem. Res. 1968, 1, 202
- (101) Ginespie, R. Studnev, Yu. N.; Krotovich, I.; Furin, G. G. Izv. Akad. Nauk. SSSR, Ser. Khim. 1981, 927.
- (103) Binder, G. E.; Schmidt, A. Z. Anorg. Allg. Chem. 1980, 467, 197.
- (104) Wilson, W. W.; Aubke, F. J. Fluorine Chem. 1979, 13, 431. (105) Foropoulos, J., Jr.; Desmarteau, D. D. Inorg. Chem. 1984, 23,
- 3720.
- (106) Storr, A.; Yeats, P. A.; Aubke, F. Can. J. Chem. 1972, 50, 452.
 (107) Paul, R. C.; Singh, S.; Kumar, R. C.; Sharma, R. D.; Verma,
- R. D. Indian J. Chem., Sect. A 1979, 17, 273 (108) Deacon, G. B.; Smith, R. N. M. J. Fluorine Chem. 1980, 15, 85.
- (109) Paul, R. C.; Sharma, R. D.; Singh, S.; Verma, R. D. J. Inorg. Nucl. Chem. 1981, 43, 1919.
- (110) Schmeisser, M.; Sartori, P.; Lippsmeier, B. Chem. Ber. 1970, 103.868.
- (111) Steipien, C.; Carter, H. A.; Aubke, F., unpublished results cited in: Dalziel, J. R.; Aubke, F. Inorg. Chem. 1973, 12, 2707.
- (112) Komiya, S.; Koshi, J. K. J. Am. Chem. Soc. 1976, 98, 7599.
 (113) Stuhl, L. S.; Muetterties, E. L. Inorg. Chem. 1978, 17, 2148.

- (114) Trogler, W. E. J. Am. Chem. Soc. 1979, 101, 6459.
 (115) Foley, P.; Whitesides, G. M. Inorg. Chem. 1980, 19, 1402.
- (116) Black, D. St. C.; Deacon, G. B.; Thomas, N. C. Transition Met. Chem. (Weinheim, Ger.) 1980, 5, 317.
- (117) Black, D. St. C.; Deacon, G. B.; Thomas, N. C. Aust. J. Chem. 1982, 35, 2445. Polyhedron 1983, 2, 409.

- 1982, 35, 2445. Polyhedron 1983, 2, 409.
 (118) Voran, S.; Malisch, W. Angew. Chem. 1983, 95, 151.
 (119) Henis, N. B. H.; Lamanna, W.; Humphrey, M. B.; Bursey, M. M.; Brookhart, M. S. Inorg. Chim. Acta 1981, 54, L11.
 (120) Merrifield, J. H.; Fernández, J. M.; Buhro, W. E.; Gladysz, J. A. Inorg. Chem. 1984, 23, 4022.
 (121) Bonazza, B. R.; Lillya, C. P.; Magyar, E. S.; Scholes, G. J. Am. Chem. Soc. 1979, 101, 4100.
 (122) Doyle G.: Eriksen K. A.: Van Engen D. Inorg. Chem. 1983.
- (122) Doyle, G.; Eriksen, K. A.; Van Engen, D. Inorg. Chem. 1983, 22. 2892.
- Obafemi, C. A. J. Organomet. Chem. 1981, 219, 1 (123)
- (124) Eichbichler, J.; Peringer, P. Inorg. Chim. Acta 1980, 43, 121.
 (125) Peringer, P. J. Inorg. Nucl. Chem. 1980, 42, 1501.
 (126) Strope, D.; Shriver, D. F. J. Am. Chem. Soc. 1973, 95, 8197.

- (127) Strope, D.; Shriver, D. F. Inorg. Chem. 1974, 13, 2652.
- (128) Burgess, J.; Hacker, M. J.; Kemmitt, R. D. W. J. Organomet. (120) Burgess, J., Hacker, M. C., Hennist, E. Z. 1997, 99, 3302.
 (129) Smith, L. R.; Blake, D. M. J. Am. Chem. Soc. 1977, 99, 3302.
 (130) Garzon, G. G. Acta Sud Am. Quim. 1981, 1, 119.

- (131) Gell, K. I.; Schwartz, J. J. Am. Chem. Soc. 1981, 103, 2687.
 (132) Eaborn, C.; Farrell, N.; Murphy, J. L.; Pidcock, A. J. Organomet. Chem. 1973, 55, C68.
 (133) Eaborn, C.; Farrell, N.; Pidcock, A. J. Chem. Soc., Chem.
- Commun. 1973, 766.
- Jablonski, C. R. J. Organomet. Chem. 1977, 142, C25. (134)
- Garzon, G. Ecletica Quim. 1979, 4, 29. (135)
- Olgemoeller, B.; Bauer, H.; Beck, W. J. Organomet. Chem. (136)1**981**, *213*, C57
- (137) Olgemoeller, B.; Beck, W. Chem. Ber. 1981, 114, 2360.
 (138, Olgemoeller, B.; Bauer, H.; Loebermann, H.; Nagel, U.; Beck, W. Chem. Ber. 1982, 115, 2271.
- (139) Kozikowski, A. P.; Ames, A. J. Am. Chem. Soc. 1980, 102, 860.
- (140) van Koten, G.; Jastrzebski, J. T. B. H.; Noltes, J. G. J. Org. Chem. 1977, 42, 2047.
 (141) Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95,
- 3300.
- (142) Doyle, M. P.; Trudell, M. L. J. Org. Chem. 1984, 49, 1196.
 (143) Lewandos, G. S.; Maki, J. W.; Ginnebaugh, J. P. Organo-metallics 1982, 1, 1700.

(148)

(149)

98, 423.

Chem. 1977, 16, 1782.

- (144) Dines, M. B. J. Organomet. Chem. 1974, 67, C55.
 (145) Ten Hoedt, R. W. M.; van Koten, G.; Noltes, J. G. J. Organometal. Chem. 1979, 179, 227.
- (146) Ten Hoedt, R. W. M.; van Koten, G.; Noltes, J. G. J. Orga-(147) Hurtado, R. J.; Casillas, R. V.; Ogura, T. Transition Met. Chem. (Weinheim, Ger.) 1977, 2, 91.

Evers, J. M.; Mackor, A. Recl. Trav. Chim. Pays-Bas 1979,

van Koten, G.; Jastrzebski, J. T. B. H.; Noltes, J. G. Inorg.

Coordinated Trifluoromethanesulfonate and Fluorosulfate

- (150) Paul, R. C.; Bajaj, S.; Kumar, R. C.; Verma, R. D. Indian J. (150) Fau, R. O., Dajaj, S., Rumar, R. C.; Verma, R. D. Indian J. Chem., Sect. A 1978, 16, 174.
 (151) Noftle, R. E.; Cady, G. H. Inorg. Chem. 1966, 5, 2182.
 (152) Singh, S.; Bedi, M.; Verma, R. D. J. Fluorine Chem. 1982, 20,
- 107
- (153) Paul, R. C.; Kumar, R. C.; Verma, R. D. J. Fluorine Chem. 1978, 11, 203. Singh, S.; Gill, M. S.; Verma, R. D. J. Fluorine Chem. 1**985**, 27, 133.
- (154) Taube, H.; Scott, A. Inorg. Chem. 1971, 10, 62.
 (155) Olgemoeller, B.; Olgemoeller, L.; Beck, W. Chem. Ber. 1981, 14, 2971
- (156) Paul, R. C.; Singh, S.; Verma, R. D. J. Fluorine Chem. 1980, 16.153
- (157) Paul, R. C.; Singh, S.; Verma, R. D. J. Indian Chem. Soc.
- (1981, 58, 24.
 (158) Reed, C. A.; Mashiko, T.; Bentley, S. P.; Kastner, M. E.; Scheidt, W. R.; Spartalian, K.; Lang, G. J. Am. Chem. Soc. 1979, 101, 2948.
- (159) Boersma, A. D.; Goff, H. M. Inorg. Chem. 1982, 21, 581.
 (160) Dixon, N. E.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M.
- (100) Dixon, A. E., Hawance, G. A.; Lay, P. A.; Sargeson, A. M. Inorg. Chem. 1983, 22, 841.
 (161) Dixon, N. E.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M. Inorg. Chem. 1984, 23, 2940.
- (162) Harrowfield, J. MacB.; Sargeson, A. M.; Singh, B.; Sullivan,
- (162) Thartownerd, J. MacD., Sargeson, A. M.; Singh, B.; Sullivan, J. C. Inorg. Chem. 1975, 14, 2864.
 (163) Lawrance, G. A.; Lay, P. A.; Sargeson, A. M.; Taube, H. Inorg. Synth. 1985, 24, in press.
 (164) Lay, P. A.; Magnuson, R. H.; Sen, J.; Taube, H. J. Am. Chem.
- 1985, 1923 (166) Jackson, W. G.; Fee, W. W. Inorg. Chem. 1975, 14, 1161 and
- references therein. (167) Comba, P.; Curtis, N. J.; Sargeson, A. M., unpublished re-
- sults. (168) Haight, G. P., Jr.; Hambley, T. W.; Hendry, P.; Lawrance, G. A.; Sargeson, A. M. J. Chem. Soc., Chem. Commun. 1985, 488.
- (169) Sullivan, B. P.; Meyer, T. J. J. Chem. Soc., Chem. Commun. 1984. 403.
- (170) Lay, P. A.; Sargeson, A. M.; Taube, H. Inorg. Synth. 1985, 24, in press.
- (171) Lay, P. A.; Sargeson, A. M.; Ware, D. C.; Taube, H., unpublished data.
- (172) Anderes, B.; Collins, C. T.; Lavallee, D. K. Inorg. Chem. 1984, 23, 2201.
- (173) Magnuson, R. H.; Lay, P. A.; Taube, H. J. Am. Chem. Soc. 1983, 105, 2507.
 (174) Hambley, T. W.; Lawrance, G. A. Aust. J. Chem. 1984, 37,
- 435.
- (175) Lawrance, G. A., unpublished results.
 (176) Shimura, Y.; Tsuchida, R. Bull. Chem. Soc. Jpn. 1956, 29, 311.
- (177) Thurston, V.; Ludvig, M.; Gard, G. L. J. Fluorine Chem. 1982, 20, 609.
- (178) Nishizawa, M.; Yakenaka, H.; Nishide, H.; Hayashi, Y. Tet-(179) Mayer, J. M.; Abbott, E. H. Inorg. Chem. 1983, 22, 2774.
 (180) Johnson, R. W.; Holm, R. H. J. Am. Chem. Soc. 1978, 100,
- 5338. (181) Johnson, W. M.; Dev, R.; Cady, G. H. Inorg. Chem. 1972, 11,
- 2260.
- (182) Brown, S. D.; Gard, G. L. Inorg. Chem. 1978, 17, 1363.
- (183) Dev, R.; Cady, G. H. Inorg. Chem. 1971, 10, 2354.

- (184) Dev, R.; Johnson, W. M.; Cady, G. H. Inorg. Chem. 1972, 11, 2259.
- (185) Lee, K. C.; Aubke, F. Inorg. Chem. 1980, 19, 119.
- (186) Lee, K. C.; Aubke, F. Can. J. Chem. 1981, 59, 2835.
- (187) Brown, S. D.; Green, P. J.; Gard, G. L. J. Fluorine Chem. 1975, 5, 203. (188)
- Wilson, W. W.; Naulin, C.; Bougon, R. Inorg. Chem. 1977, 16, 2252.
- (189) Desmarteau, D. D. Inorg. Chem. 1972, 11, 2641.
- (190) Brown, S. D.; Gard, G. L. Inorg. Nucl. Chem. Lett. 1975, 11,
- (191) Paul, R. C.; Sharma, N. C.; Verma, R. D.; Sharma, D. K. Indian J. Chem., Sect. A 1976, 14, 705. (192) Paul, R. C.; Kumar, R. C.; Verma, R. D. J. Less-Common
- Met. 1978, 58, 1.
- (193) Lee, K. C.; Aubke, F. Inorg. Chem. 1979, 18, 389.
 (194) Garner, C. D.; Wallwork, S. C. J. Chem. Soc. A 1970, 3092.
 (195) Kuhn, N.; Schmidt, R.; Sartori, P. Chem. Ztg. 1982, 106, 267.
- (196) Dines, M. B. J. Inorg. Nucl. Chem. 1976, 38, 1380.
- van Koten, G.; Jastrzebski, J. T. B. H.; Noltes, J. G. Inorg. (197) Chim. Acta 1977, 21, L9.
- (198) Ogura, T. Transition Met. Chem. (Weinheim, Ger.) 1976, 1, 179.
- (199) Peringer, P.; Eichbichler, J. J. Organomet. Chem. 1983, 241, 281.
- (200) Peringer, P. Inorg. Nucl. Chem. Lett. 1980, 16, 205.
 (201) Schleyer, P. V. R.; Sliwinski, W. F.; van Dine, G. W.; Schöllkopf, U.; Paust, J.; Fellenberger, K. J. Am. Chem. Soc. 1972, 94, 125 and references therein.
- (202) Lay, P. A.; Magnuson, R. H.; Sen, J.; Taube, H. J. Am. Chem. Soc. 1982, 104, 7658.
- (203) Curtis, N. J.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M. Inorg. Chem. 1986, in press.
- (204) Curtis, N. J.; Lawrance, G. A. Inorg. Chem. 1986, in press.
- (205) Jackson, W. G.; Randall, M. L.; Sargeson, A. M.; Marty, W. Inorg. Chem. 1983, 22, 1013. Jackson, W. G.; Begbie, C. Randall, M. L. Inorg. Chim. Acta 1983, 70, 7. Jackson, W. G.; Fairlie, D. P.; Randall, M. L. Inorg. Chim. Acta 1983, 70, 197.
- (206) Lawrance, G. A. Inorg. Chem. 1985, 24, 323.
 (207) Chan, S. C. J. Chem. Soc. 1963, 5137. Ibid. 1965, 418.

- (201) Chan, S. C. J. Chem. Soc. 1906, 5157. Ind. 1908, 416.
 (208) Curtis, N. J.; Lawrance, G. A., unpublished data.
 (209) Lawrance, G. A.; Sargeson, A. M., unpublished data.
 (210) Klein, H. P.; Thewalt, U. J. Organomet. Chem. 1981, 206, 69.
 (211) Curtis, N. J.; Lawrance, G. A.; Sargeson, A. M. Aust. J. Chem. 1983, 36, 1495.
- (212) Curtis, N. J.; Lawrance, G. A. Inorg. Chim. Acta 1985, 100, 275.
- (213) Jackson, W. G.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M. J. Chem. Soc., Chem. Commun. 1982, 70.
 (214) Balahura, R. J.; Jordan, R. B. Inorg. Chem. 1970, 9, 1567.
- (215)Jordan, R. B.; Sargeson, A. M.; Taube, H. Inorg. Chem. 1966, 5, 1091.
- (216)Curtis, N. J.; Dixon, N. E.; Sargeson, A. M. J. Am. Chem.
- Soc. 1983, 105, 5347. Dessens, S. E.; Merrill, C. L.; Saxton, R. J.; Ilaria, R. L., Jr.; (217)Lindsey, J. W.; Wilson, L. J. J. Am. Chem. Soc. 1982, 104, 4357.
- Lawrance, G. A.; Curtis, N. J., unpublished results. (218)
- (219) Lydon, J. D.; Sargeson, A. M., unpublished results.
 (220) Attala, M.; Lawrance, G. A.; Summers, L. A. Transition Met. (220)Chem. (Weinheim, Ger.) 1985, 10, 354.
- (221) Lay, P. A., unpublished results.